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1 Introduction

The field of natural language processing (NLP) has been transformed in two
related ways in recent years. First, the field moved towards using neural network
architectures like LSTMs1 [12] and transformers [31], in contrast to approaches
that explicitly represent grammatical rules. Another innovation was a move to-
wards semi-supervised learning [24,26,7]: language models have been used in var-
ious ways to solve downstream NLP tasks that previously would have required
large labeled datasets. Transformer-based language models in particular have
been remarkably empirically successful across a range of NLP tasks [28], and
making the models and datasets bigger tends to not only improve performance
on benchmarks [13] and linguistic generalization [30,32], but can also lead to the
emergence of new algorithmic behavior, such as arithmetic and logical reasoning
[33].

I will argue that there are many intriguing mysteries about these empirical
results that formal language theory can clarify. It seems as if large transformer
language models are implicitly learning some aspects of natural language gram-
mar [30]. If so, it seems useful to understand what kinds of formal grammars
such networks can simulate, and how grammatical dependencies are represented
within them. For comparing and extending neural network architectures, it would
also be useful to have a theory of how different types of neural networks compare
in expressive power to one another.

Rather than just focusing on grammatical dependencies, we may also adopt
a similar formal language theoretic perspective for understanding reasoning in
transformer language models. Can we characterize the kinds of computational
problems transformers can solve? Can we use this theory to extract algorithmic
behavior from a transformer into a discrete, human-readable program? Can we
predict the amount of language modeling data needed to solve various reasoning
problems, or find problems that transformers can never solve, even at massive
scale?

I will survey recent work that provides some insight on the computational
model of RNNs and transformers. I will start by discussing an older line of work
analyzing the power of different RNN variants in relation to one another and
the Chomsky hierarchy. I will then discuss a newer line of work that analyzes
the computational power of transformers using circuit complexity theory.

1 An LSTM is a special kind of recurrent neural network [8,9].
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While the techniques used in these two lines of work may be different, some
unified insights emerge for understanding the capabilities and inner workings
of both RNNs and transformers. In particular, counting seems to be a central
computational ability to the kinds of processing possible in both LSTMs and
transformers. Yet the benefit of counting is not the same for each architecture:
transformers—but not LSTMs—can use counting to recognize k-Dyck for any k,
a capability often taken to embody sensitivity to hierarchical structure [2]. On
the other hand, a fundamental weakness of transformers compared to LSTMs
is parallelism: while RNNs can simulate certain computation graphs linear in
the size of the input sequence, transformers have a constant-depth computation
graph, and thus must do much more processing in parallel.

2 RNNs

There are deep connections between neural networks with recurrence and au-
tomata: historically, one motivation for developing finite automata was to model
the computation of networks of biological neurons with binary activation pat-
terns [15]. The 1990s saw the analysis of RNN models with linear-thresholded
activations, which, with infinite precision and run time, are Turing-complete and
thus significantly more expressive than finite automata [27]. See [17] for further
discussion of RNN results with infinite precision.

But the infinite-precision, infinite-runtime model [27] does not capture the
type of RNNs used in modern deep learning, which are typically unrolled with
one step per input token (“real-time”), and suffer from practical precision con-
straints that prevent storing an unbounded Turing machine tape in a finite
number of numbers in [−1, 1].2 How then should we understand the set of lan-
guages that RNNs can learn to recognize in practice? A central finding here
is that LSTMs, one RNN extension, can recognize languages requiring count-
ing, whereas most other RNNs cannot [34]. [16] then proposed saturated RNNs
as a simplified theoretical model of bounded-precision RNNs, and showed that
the expressive power of saturated RNNs often predicts the empirical abilities of
RNNs.

2.1 LSTMs Can Count, Other RNNs Cannot

Aiming to understand the practical power of RNNs, [34] empirically evaluate the
ability of basic RNNs and their variants, LSTMs [12] and GRUs [5], to recognize
the formal language anbn. Empirically, they show that LSTMs can recognize
anbn, while RNNs and GRUs cannot. Moreover, they show the LSTM achieves

2 There are at least two reasons to view this practical precision setting as more realistic.
First, hardware imposes a maximum precision on each number in the RNN, which
may reasonably be considered to be finite or logarithmic in the input sequence length
n. Second, RNNs are trained by gradient descent, and we would like to understand
the class of languages that can be learned by an RNN. Intuitively, constructions that
are sensitive to low-order imprecision may be hard to learn by gradient descent [34].
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this by “counting”: using a memory cell to track the difference between the
number of a’s and b’s in the input. Similar results were then observed for other
languages requiring counting, such as 1-Dyck or shuffled Dyck [29]. In contrast,
LSTMs were not able to reliably learn 2-Dyck, which requires a stack as opposed
to just counting [29].3

2.2 Saturated RNNs as a Model of Practical RNNs

[16,22] analyze the expressive power of saturated RNNs as a proxy for what un-
saturated RNNs can learn by gradient descent. This technique is motivated by
the hypothesis that networks requiring bounded parameter norm are unlikely to
be acquired by a training process where the parameter norm is growing consis-
tently over the course of training.4 Given a network f(x; θ), a saturated network
is the function f ′(x; θ) obtained by making the parameters θ large:

f ′(x; θ) = lim
ρ→∞

f(x; ρθ).

The effect of making the weights large in this way is to convert the activation
functions in all parts of the network to step functions. [16] place saturated RNNs,
GRUs, and LSTMS in the Chomsky hierarchy. Saturated RNNs and GRUs are
equivalent to finite automata [16], whereas saturated LSTMs can simulate a con-
strained class of counter automata that can recognize 1-Dyck, anbn, or anbncndn

but do not have enough memory to recognize 2-Dyck. Thus, LSTMs can be
understood to cross-cut the conventional Chomsky hierarchy: able to recognize
some context-sensitive languages, but unable to simulate a stack or process arbi-
trary hierarchical structure. This analysis of saturated networks places different
types of RNNs in different relations to the Chomsky hierarchy, and these pre-
dictions largely match the type of languages that unsaturated RNNs can learn
to recognize in practice.

2.3 Summary and Open Questions

Both empirical results and the theoretical model of saturated networks suggests
that counting is a key capability of LSTMs that RNNs and GRUs do not have.
While counting enables LSTMs to recognize some languages like anbn and 1-
Dyck, it does not allow LSTMs to process arbitrary hierarchical or context-free
structure (e.g., 2-Dyck or palindromes).

3 Transformers

Over the last 5 years, transformers have largely replaced RNNs as the backbone
of neural NLP systems. A difficulty in extending automata-based analysis of

3 See also [6] for more recent, but similar, empirical results on the ability of different
RNN variants to recognize formal languages.

4 See [18] for thorough empirical exploration of norm growth and saturation during
the training of large transformer language models.
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RNNs to transformers is that the transformer neural network architecture lacks
autoregressive structure. Instead, recent work has made progress understanding
the power of transformers by relating transformers to formal language classes
defined by circuit families and logics.

3.1 Transformers with Hard Attention

[10] prove that the transformers with hard attention cannot recognize even sim-
ple formal languages like parity or 1-Dyck. [11] extend this result to prove that
hard-attention transformers can be simulated5 by constant-depth, poly-size cir-
cuit families, which recognize the formal language class AC0. This implies [10]’s
results, as well as demonstrating new languages that hard-attention transform-
ers cannot recognize, such as majority (taking the majority vote of a sequence
of bits).

3.2 Transformers with Soft Attention

[3] show that, like LSTMs, transformers have the ability to count, and can use
this to recognize 1-Dyck and other related formal languages. [21,25] show that
transformers can also use counting to recognize majority, implying that soft
attention is stronger than hard attention.

[21] then analyze saturated transformers, which have simplified attention pat-
terns compared to soft attention, but can still count. They find that saturated
transformers over a floating-point data type can be simulated by constant-depth,
poly-size threshold circuit families (i.e., the complexity class TC0). Intuitively,
counting is one of the key capabilities achievable in TC0 but not AC0, suggesting
that counting is a good way to understand the gain in power that saturated
attention grants relative to hard attention.

[19] then extend [21]’s result to show that arbitrary soft-attention trans-
formers with precision logarithmic in the input length can be simulated in the
tighter class log-space-uniform TC0. Log-space-uniform TC0 is conjectured to
be separated from other complexity classes like L, NL, or P, which would im-
ply that transformers cannot solve complete problems for these classes. Thus,
accepting these separation conjectures, transformers cannot compute connectiv-
ity in directed or undirected graphs, solve the universal context-free grammar
recognition problem, or solve linear systems of matrix equations.

3.3 Logics and Programming Languages for Expressing Transformer
Computation

One converging theme in recent work has been attempting to propose symbolic
formalisms describing computation in transformers.

5 Here, “simulate” means that any function computed by a transformer can also be
computed by such a circuit family.
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[20] further refine the circuit-based upper on soft-attention transformers,
showing that transformers can be simulated in log-time-uniform TC0. This class
has an equivalent characterization as the formal languages definable in first-order
logic with majority quantifiers [23], or FO(M). This immediately implying that
soft-attention transformers can be “translated” to first-order logic formulae with
majority quantifiers that compute the same function.

Along similar lines, [4] propose FOC(+,MOD), or first-order logic with count-
ing quantifiers6, as a logical model of transformers. [4] prove that FOC(+,MOD)
is an upper bound on finite-precision transformers and a lower bound on trans-
formers with arbitrary precision, although figuring out whether there is some
model of transformers for which it is a tight bound remains open.

Finally, [35] propose a programming language called RASP for expressing
computation in a transformer-like way. [14] create a compiler that compiles con-
strained RASP programs into actual transformers. [35] shows that RASP can
recognize arbitrary Dyck languages (not just 1-Dyck), and, empirically, trans-
formers can as well.7

3.4 Summary and Open Questions

Counting—a key capability separating LSTMs from RNNs—also separates soft-
attention transformers from hard-attention transformers. Upper bounds on the
power of transformers derived via circuit complexity give us classes of problems
that transformers cannot solve, but which are efficiently solvable by a recurrent
model of computation like a Turing machine. The intuition behind why these
problems are hard for transformers is that transformers are fundamentally con-
strained to parallel computation, and it is conjectured in complexity theory that
certain problems are fundamentally unparallelizable.

Significant progress has been made on the analysis of transformers in re-
cent years, and connections to deep questions in complexity theory have been
revealed. Yet, there are still many things that are unclear. Is saturated atten-
tion fundamentally weaker than soft attention? Can we make upper bounds and
lower bounds on transformers tighter? Can we leverage theoretical insights to
extract discrete computational mechanisms from trained transformers?

4 Conclusion

There has been a wide range of work in recent years analyzing the capabilities
of RNNs and transformers as formal grammars. One unifying insight that has
emerged for both types of neural networks is that they can leverage counting to
process structure in their input, although potentially in different ways. Trans-
formers in particular can use counting to recognize arbitrary Dyck languages,

6 with addition and mod but not ordering over positions
7 In their experiments, [35] add special regularization to the attention patterns of the

transformer to get it to learn Dyck languages properly.
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which are often viewed as an exemplar of hierarchical structure. Due to the trans-
former’s lack of autoregressive structure, circuit complexity and logic have been
more useful than automata theory for understanding transformers’ capabilities.
Hopefully, insights from these theories may continue to refine our ability to peer
into the black box of transformers, and perhaps understanding transformers may
even inspire new research questions or advances in these fields.

5 Resources

A key area for active research is the Formal Languages and Neural Networks
(FLaNN) Discord server and talk series. For more extensive (but out of date)
surveys, the reader should see [1,17]. A more up-to-date survey of the circuit
complexity-based analysis of transformers is under preparation by members of
FLaNN.
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