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Abstract

Scaling up language models (LMs) has driven recent progress in NLP and AI. In many ways, it

appears thatmaking LMs larger unlocksmore complex abilities, but towhat extent is progress due

to scaling bottlenecked by the fundamental computational limitations of LM architectures? This

thesis develops a theory of the computational power of LM architectures, providing a principled

framework for addressing this question. First, I consider the computational power of the trans-

former architecture used by the vast majority of LMs, finding that it can only express problems

in the complexity class uniform TC0. Thus, under standard complexity conjectures, transformers

cannot express many simple computational problems including state tracking, evaluating com-

positional formulas, and graph connectivity. I then consider how chain-of-thought reasoning

extends the expressive power of transformer LMs, ameliorating this fundamental weakness, and

the potential for LM architectures with expressive power beyond that of transformers. Finally,

I discuss the broader implications of these theoretical results for LMs capabilities in practice. A

major conceptual takeaway is that there is a fundamental tradeoff between parallelism and ex-

pressive power for LM architectures: the parallelism so essential for scaling up transformer LMs

also precludes them from expressing many simple computational problems. Overall, the theory

developed in this thesis lets us more precisely understand the computational model of LMs, rea-

son about LMs’ fundamental limitations, and also provide a strong foundation upon which to

develop novel language modeling architectures and inference methods.
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1 | Introduction

Since 2018, much of the progress in AI has been intimately tied to large language models

(LMs). Large LMs are huge neural neural networks, typically built with the transformer architec-

ture [Vas+17], that are trained to sequentially predict large volumes of text one piece at a time.

LMs, originally niche models with a narrow set of uses [Bra+07], have been been given a new

life as general-purpose systems that can solve many tasks out of the box or with some minor

adaptation. Simply make the LMs bigger and train them on more data, the story goes [Kap+20;

Wei+22b], and they will become even more capable, improving in performance on some capabil-

ities and acquiring other ones that smaller LMs did not have at all.

But scaling cannot be the full story: the representational power of the models matters as well,

beyond the sheer amount of data and compute going into their training. Past eras of NLP had

their own large LMs [Bra+07], but the fact that these were 𝑛-gram models fundamentally con-

strained their capabilities for language processing. In contrast, what is the ceiling on the kinds

of problems that can be solved by scaling today’s LMs? And what role does the LM architecture

(e.g., the transformer) play in controlling the kinds of tasks an LM can solve and the algorithms

it can implement? This dissertation takes a step to addressing these questions by developing a

theory of the computational expressive power (or expressivity) of transformers and related LM

architectures. That is, it examines the kinds of computation that LMs can represent, and, per-

haps more interestingly, the kinds of computation that they cannot. In particular, Chapter 3

will show using circuit complexity theory that the transformer, the dominant architecture for
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language modeling, is fairly constrained in the kind of computation it can express: formally, it

can only solve problems in the complexity class TC0, representing highly parallelizable computa-

tion. This means that, under standard complexity conjectures, transformers cannot express many

computationally simple—but inherently sequential—problems, such as state tracking, evaluating

compositional formulas, and graph connectivity—no matter how large or well trained they are.

Going beyond simple transformer LMs, we will also show in Chapter 4 how this theory can

help us understand the value of approaches like chain-of-thought (CoT) reasoning and motivate

the design of new LM architectures. As we will see, CoT extends the theoretical expressive power

of transformer LMs beyond TC0, allowing them to represent inherently sequential computation.

Furthermore, we will discuss how these theoretical results have guided the development of LM

architectures that can express some inherently sequential problems that transformers cannot (un-

der standard conjectures). Thus, theoretical understanding does not just better elucidate current

LMs, but it can lead to more powerful, efficient, and expressive LMs in the future.

Towards this end, we conclude in Chapter 5 with a discussion of some high-level takeaways

from the theory of transformer expressivity. A central one is a notion of a parallelism tradeoff:

the computational limitations of transformers and related architectures in some sense come from

the fact that these architectures are designed to be scaled up. Scaling up requires (or at least

greatly incentivizes) parallelism, and this parallelism is fundamentally at odds with the expressive

power for inherently sequential computation. We also speculatively discuss the implications of

these theoretical results for LMs’ ability to process the syntax and semantics of natural language,

model the physical world, perform in-context learning, and reason in a general-purpose way.

Overall, this dissertation develops an expressivity theory for transformers and related ar-

chitectures, explores how these insights can guide the development of new architectures, and

considers the implications of the theory for a variety of capabilities of interest for LMs. Hope-

fully, these contributions may play a small part in recasting the alchemy of deep learning to a

principled science built on solid theoretical foundations.
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2 | Preliminaries

We will use the notation M : Q𝑛 → Q𝑚 to denote a linear operator (matrix) of shape 𝑛 ×𝑚,

which can apply to column vectors. Without loss of generality, these linear transformations can

be generalized to affine transformations, which we surpress for notational clarity.

2.1 The transformer architecture

A transformer is a neural network parameterizing a function Σ∗ → Σ. I now define the high-

level structure of the transformer in terms of its core components.

Definition 2.1 ([MS23a; MS24b]). A 𝑝-precision decoder-only transformer with ℎ heads, 𝑑 layers,

model dimension𝑚 (divisible by ℎ), and feedforward width𝑤 is parameterized by

1. An embedding matrix E : Q|Σ| → Q𝑚 and position embedding 𝜋 : N → Q that are analytic

functions whose rational polynomial power series converge [RT92], capturing standard choices.

2. For 1 ≤ ℓ ≤ 𝑑 and 1 ≤ 𝑘 ≤ ℎ, query, key, and value projections Qℓ
𝑘
,Kℓ

𝑘
,Vℓ

𝑘
: Q𝑚 → Q𝑚/ℎ .

3. For 1 ≤ ℓ ≤ 𝑑 , an output projection matrix Oℓ : Q𝑚 → Q𝑚 , initial feedforward projection

Wℓ
1 : Q

𝑚 → Q𝑤 , and final feedforward projectionWℓ
2 : Q

𝑤 → Q𝑚 .

4. An output projection matrix U : Q𝑚 → Q|Σ| .

Given this parameterization of a transformer, we can define the function it computes, follow-

ing the standard definition of the transformer architecture [Vas+17].
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Definition 2.2 ([MS23a; MS24b]). A transformer T computes a function Σ∗ → Σ. Given𝑤 ∈ Σ𝑛 ,

1. Embedding layer: For 1 ≤ 𝑖 ≤ 𝑛, h0𝑖 = E[𝑤𝑖] + 𝜋 (𝑖), where E[𝑤𝑖] is the embedding of𝑤𝑖 .

2. Self-attention sublayer: At each layer ℓ , we compute ℎ attention heads. We first compute the

sublayer input ĥℓ−1𝑖 = layer_norm(hℓ−1𝑖 ). For each head 1 ≤ 𝑘 ≤ ℎ, we compute queries

qℓ
𝑖,𝑘

= Qℓ
𝑘
ĥℓ−1𝑖 , keys kℓ

𝑖,𝑘
= Kℓ

𝑘
ĥℓ−1𝑖 , and values vℓ

𝑖,𝑘
= Vℓ

𝑘
ĥℓ−1𝑖 . The output of head 𝑘 is

aℓ
𝑖,𝑘

=

𝑚∑︁
𝑗=1

exp(1/𝜏 · (qℓ
𝑖,𝑘
)⊤kℓ

𝑗,𝑘
)

𝑍 ℓ
𝑖,𝑘

· vℓ
𝑗,𝑘
, where 𝑍 ℓ

𝑖,𝑘
=

𝑚∑︁
𝑗=1

exp(1/𝜏 · (qℓ
𝑖,𝑘
)⊤kℓ

𝑗,𝑘
)

and 𝜏 =
√︁
𝑑/ℎ. Further, let𝑚 = 𝑖 for causally masked attention (the default), 𝑚 = 𝑖 − 1 for

strictly causally masked attention, and𝑚 = 𝑛 for unmasked attention. The self-attention sub-

layer then concatenates the output of ℎ heads and then applies a linear projection to compute

gℓ𝑖 = hℓ−1𝑖 + ⟨aℓ𝑖,1, . . . , aℓ𝑖,ℎ⟩ · O
ℓ .

3. Feedforward sublayer: The feedforward sublayer computes the following tokenwise transfor-

mation: hℓ𝑖 = gℓ𝑖 +Wℓ
2(Wℓ

1g
ℓ
𝑖 )+.

4. Unembedding layer: The transformer outputs the token associated with argmax h𝑑𝑛U.

In this way, a transformer T implements a function Σ∗ → Σ. We will write T (𝑤) to represent

the application of transformer T to sequence 𝑤 . To view transformers as language recognizers,

we can simply identify a token in Σ as a special “accept” symbol 𝑎 and say that the transformer

recognizes a language 𝐿 if, for any string𝑤 ,𝑤 ∈ 𝐿 ⇔ T (𝑤) = 𝑎.

Transformer variants. Certain idealizations are sometimes made to the transformer when

implementing constructions for algorithmic problems. First, the transformer can be modified

to have averaging hard attention (also called saturated attention; [Mer+21a; MSS22]), meaning

4



that attention weight is only assigned to positions at which the key-query match is maximized.

Formally, we can define averaging hard attention by replacing the attention heads with

aℓ
𝑖,𝑘

= lim
𝜏→0

𝑚∑︁
𝑗=1

exp(1/𝜏 · (qℓ
𝑖,𝑘
)⊤kℓ

𝑗,𝑘
)

𝑍 ℓ
𝑖,𝑘

· vℓ
𝑗,𝑘
.

This corresponds to the “low-temperature limit” of the attention head, causing it to attend uni-

formly over all the tokens that maximize the attention score [Mer+21a]. We refer to a model with

attention heads of this form as an averaging hard attention transformer (AHAT).

The second change to the transformer that is sometimes made is allowed masked pre-norm.

This means we redefine ĥℓ−1𝑖 = layer_norm(Whℓ−1𝑖 ) for some matrix W. Many of our construc-

tions with transformers will use these modifications, though our upper bounds on the expressive

power of transformer (Theorem 3.1) apply with or without them.

Numerical datatype. A transformer processes strings by embedding them into numerical

quantities in some datatype D that permits addition (+), multiplication (·), and division (/), as

well as some elementwise functions like exp. In much of the published work that culminated in

this thesis, D has typically been log-precision floats, i.e., floating-point numbers with 𝑂 (log𝑛)

bits of precision, where𝑛 is the input sequence length. On the other hand, in this thesis, I will sim-

plify the argument by instead lettingQ be arbitrary rationals [Chiang, p.c.; Chi24]. This elegantly

circumvents low-level issues with floating-point arithmetic such as the non-associativity of ad-

dition and multiplication that should bear much on the expressivity of transformers in practice.

Abstracting away these details lets us present a cleaner proof in a simpler formal model.

However, one data type issue must still be clarified to make this rational data type fully well-

defined. In principle, the nonlinearities
√· and exp used in the transformer computation graph

return irrational outputs, though, in practice, of course, they are implemented with rational ap-

proximations on hardware. To capture this in our model, we will assume that these functions are

5



approximated by their Taylor expansion with at most a polynomial number of terms, providing

a close rational approximation to the true irrational output. This approximation is likely more

faithful than the lower-precision approximations used in practice, but our arguments would go

through if the precision of the transformer is constrained as well.

2.2 Circuit complexity

Circuits are a model of computation introduced in complexity theory introduced to formalize

parallel computation. We will briefly review some basic notions from circuit complexity here; for

more background, consult a reference [Str+24; AB09].

Circuits. Circuits are directed computation graphs, where each node can represent either an

input variable (if it is a leaf) or a function that should be applied to some previously computed

values (if it has children). Typically, the values computed by a circuit are considered to be of

boolean type, and the internal nodes represent logic functions. We can view a boolean circuit

of this form with a single output node as defining a function {0, 1}𝑛 → {0, 1} for some fixed 𝑛.

Circuits can be naturally generalized to take tokens in a finite vocabulary Σ as input by imaging

these tokens are encoded in binary. Thus, they can be taken to define functions Σ𝑛 → {0, 1}.

Circuit families. While fixed-input-size circuits are an interesting object of study in their own

right, it is often useful in complexity theory to analyze problems or languages where the input

size is dynamic. To generalize circuits to accept variable-sized inputs, we introduce the notion of

a circuit family: a family of circuits C = {𝐶𝑛}∞𝑛=0. For any input 𝑤 ∈ Σ∗, we process with 𝐶 |𝑤 | ,

where, in this context, |𝑤 | represents the size of𝑤 encoded in binary. Thus, circuits families can

be taken to define functions Σ∗ → {0, 1}. In other words, they define formal languages.
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Circuit complexity measures. The depth of a circuit is the length of the longest path from an

input node to an output node. The size is the number of wires in the circuit. For circuit families,

we can express the depth and width as a function of 𝑛. For example, ”constant depth” means there

is some 𝑐 such that depth(𝐶𝑛) = 𝑂 (1), and “polynomial size” means size(𝐶𝑛) = 𝑂 (𝑛𝑐) for some 𝑐 .

There are several standard classes of formal languages defined via bounds on circuit depth and

width in this way:

1. NC𝑘 is the class of bounded fan-in circuit families of constant depth and polynomial size.

Bounded fan-in means each gate has at most two children, and the gate types allowed are

AND, OR, and NOT.

2. AC𝑘 is the class of unbounded fan-in circuit families of constant depth and polynomial size.

It is the same as NC𝑘 except gates can have unbounded fan-in.

3. TC𝑘 is the class of unbounded fan-in threshold circuit families of constant depth and poly-

nomial size. It is the same as AC𝑘 but withMAJ gates that take a majority vote of a sequence

of bits.

These circuit classes form the following clean relation with each other, for any 𝑘 :

NC𝑘 ⊆ AC𝑘 ⊆ TC𝑘 ⊆ NC𝑘+1.

We define NC as the union over all NC𝑘 , which also naturally contains AC𝑘 and TC𝑘 for any 𝑘 .

The circuit classes that will be most relevant for our analysis of transformer expressivity are AC0,

TC0, NC1, and NC.

Uniformity. As defined, circuit families are a non-uniform computational model, meaning the

computation has no finite description like we would have for a finite-state machine, Turing ma-

chine, or Python program. Non-uniformity is degenerate from the perspective of computability
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theory, as it allows circuit families to solve some undecidable problems. For example, we can

recognize the language {1𝑛 | Turing machine 𝑛 halts} by hard-coding each𝐶𝑛 to output whether

machine 𝑛 halts. To make circuit families more well-behaved, we will therefore variants of cir-

cuit families with uniformity conditions: essentially, for these families, there is a constraint that

it must be possible to construct𝐶𝑛 from the input 1𝑛 in some complexity class X. There are differ-

ent versions of uniformity depending on the choice of X, but standard choices are log-space (L)

uniformity and the stronger first-order (FO) uniformity1 [MIS90]. The complexity classes AC𝑘 ,

TC𝑘 , NC𝑘 all have uniform variants, which have the nice property that these classes form subsets

of P (polynomial time). We will generally specify the notion of uniformity that we mean unless

it is clear from context.

Hardness, Completeness, and Reductions. As in other parts of complexity theory, a useful

way to reason about problems that are likely outside of some circuit class is in terms of hardness

for a higher class. A X-hard problem is a problem 𝐿 such that any any other problem in X can be

“mapped” to 𝐿 by some simple reduction, and an X-complete problem is both X-hard and in X. If

the reductions are in the simpler class (say, TC0), then it follows that hard problems for the higher

class cannot be solved in the smaller class unless the larger and smaller classes collapse. This is

how we can conclude, for example, that NC1-hard problems are not in TC0 unless TC0 = NC1, as

long as the reductions come from a class in TC0 (e.g., AC0).

Computation graphs. We will use the term computation graph (or computation graph family)

to refer to a generalized circuits whose nodes can represent potentially non-boolean functions in

some set𝔉 (note that these gates can be taken themselves to be specified by circuit families). The

standard circuit complexity notions of size, depth, and uniformity apply analogously to compu-

tation graph families.
1For AC0 and TC0, FO uniformity is equivalent to DLOGTIME uniformity.
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2.3 Logic

Logics over strings are another computationalmodel closely related to uniform circuit families

[Imm98]. In particular, first-order logic can be defined over strings as follows:

Definition 2.3 ([MS23a]). First-order logic over strings (FO) defines a language by mapping every

string to a boolean value. The logic contains two types: an index, which represents a pointer to a

position in the string, and a formula, which evaluates to true or false.

Indices in FO are integers denoting positions in the input string:

1. The constant 1, representing the first token’s position.

2. The constant 𝑛, representing the last token’s position.

3. Symbols (e.g., 𝑖, 𝑗, 𝑘) representing variables ranging over positions 1 to 𝑛.

4. Any index built by applying addition or subtraction to other indices.

Formulas in FO are constructed as follows:

1. Let Σ be a finite alphabet. For each 𝜎 ∈ Σ and any index 𝑖 , 𝑄𝜎 (𝑖) is a formula that is true if

the 𝑖-th input token is 𝜎 .

2. For any indices 𝑖, 𝑗 , the formula bit(𝑖, 𝑗) returns the 𝑗-th bit of the binary expansion of 𝑖 .

3. For two indices 𝑖, 𝑗 , 𝑖 = 𝑗 , 𝑖 ≤ 𝑗 , and 𝑖 ≥ 𝑗 are formulas with their conventional semantics.

4. For two formulas 𝜙,𝜓 , 𝜙 ∧𝜓 and 𝜙 ∨𝜓 are formulas with their conventional semantics.

5. For any formula 𝜙 (which may refer to 𝑖 or any over variable), the following are formulas:

(a) ∃𝑖 [𝜙] means some value of 𝑖 in [1, 𝑛] makes 𝜙 true.

(b) ∀𝑖 [𝜙] means all values of 𝑖 in [1, 𝑛] make 𝜙 true.
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A formula 𝜙 with no free variables is called a sentence and returns a value in {0, 1} for each input

string. The language defined by 𝜙 is the set of strings mapped to 1.

The languages definable in FO are exactly DLOGTIME-uniform AC0 [MIS90]. Consider the

following examples:

Example 2.4 (Bigram matching). Strings containing the bigram ab: ∃𝑖 [𝑄a(𝑖) ∧𝑄b(𝑖 + 1)] .

Example 2.5 (Skip-bigram matching). Strings containing the long-distance pattern a . . . b (cf.

“induction heads” [Ols+22]): ∃𝑖 [𝑄b(𝑖) ∧ ∃ 𝑗 [ 𝑗 ≤ 𝑖 ∧𝑄a( 𝑗)]] .

We next define first-order logic with majority quantifiers, which will prove useful for analyz-

ing soft-attention transformers:

Definition 2.6 ([MS23a]). First-order logic with majority, or FO[M], is defined as FO augmented

with a majority quantifier M𝑖 [𝜙], which checks whether ≥ 𝑛/2 values of 𝑖 in [1, 𝑛] make 𝜙 true.

The languages definable in FO[M] are exactly DLOGTIME-uniform TC0. The simplest exam-

ple of a language definable in FO[M] but not FO is majority:

Example 2.7 (Majority). Strings with more b’s than a’s: M𝑖 [𝑄b(𝑖)] .

Beyond this, FO[M] is capable of definingmore complex languages. FO[M] can define thresh-

old or counting quantifiers (e.g., ∃≤𝑘𝑖 [𝜙]) that check whether 𝜙 is true at least 𝑘 times [MS23a].

This can be extended to allow a “count operator” that returns a numerical value, e.g., #𝑖 [𝜙]. This

can be used to succintly give a definition for 1-Dyck:

Example 2.8 (1-Dyck, [MS23a; Hu+25]). 1-Dyck is the well-balanced parentheses language. First

we define a depth(𝑖) macro as follows:

depth(𝑖) ≡ # 𝑗 ≤ 𝑖 [𝑄 ( (𝑖)] − # 𝑗 ≤ 𝑖 [𝑄) (𝑖)] .
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We can define 1-Dyck as

∀𝑖 [depth(𝑖) ≤ 0] ∧ depth(𝑛) = 0.

FO[M2] [MIS90] is a variant of FO[M] with equivalent expressive power. In FO[M2], the bit

predicate is removed, but the majority predicate is replaced with a generalized “paired majority”

that quantifies jointly over all pairs of positions 𝑖, 𝑗 in the input string.

C-RASP [YC24; Hua+25b] is programming language or logic that is strictly weaker than

FO[M]. C-RASP can be viewed as a restriction of FO[M] without bit where predicates are re-

stricted to be unary. In particular, when a quantifier introduces a new variable, the formula

within it cannot depend on any other variable besides the new one [YC24]. The construction

for 1-Dyck in Theorem 2.8 can be expressed in C-RASP, but C-RASP cannot express 𝑘-Dyck for

𝑘 > 1, whereas FO[M] can [Hua+25b; Hu+25].

2.4 Turing machines

We define multitape Turing machines in the standard way [MS24b; HMU01].

Definition 2.9. A multitape Turing machine is a tuple ⟨Σ, Γ, 𝑘, 𝑏,𝑄, 𝑞0, 𝛿, 𝐹 ⟩ where:

1. Σ is a finite input vocabulary

2. Γ is a finite tape vocabulary with Σ ⊆ Γ

3. 𝑘 is the number of work tapes

4. 𝑏 is a blank symbol such that 𝑏 ∈ Γ and 𝑏 ∉ Σ

5. 𝑄 is a finite set of states containing initial state 𝑞0

6. 𝛿 is a transition function (𝑄 \ 𝐹 ) × Γ𝑘+2 → 𝑄 × Γ𝑘+1 × {±1}𝑘+2

7. 𝐹 ⊆ 𝑄 is a set of halting states
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A Turing machine takes as input a string 𝜎 ∈ Σ∗. A configuration of a Turing machine is a

finite state 𝑞 along with the contents of an input tape 𝑐0, 𝑘 work tapes 𝑐1, . . . , 𝑐𝑘 , and an output

tape 𝑐𝑘+1. Finally, for each tape 𝜏 , a configuration specifies a head position ℎ𝜏 . We start with the

initial state 𝑞0 and the input tape 𝑐00 containing 𝜎 starting at position 0 with infinite 𝑏’s on each

side, and ℎ00 = 0. All other tapes start containing all 𝑏’s and with their head at 0. At each time

step 𝑖 , if 𝑞𝑖 ∉ 𝐹 , we recurrently update the configuration by first computing:

⟨𝑞𝑖+1, 𝛾1𝑖 , . . . , 𝛾𝑘+1𝑖 , 𝑑0𝑖 , . . . , 𝑑
𝑘+1
𝑖 ⟩ = 𝛿 (𝑞𝑖, 𝑐0𝑖 [ℎ0𝑖 ], . . . , 𝑐𝑘+1𝑖 [ℎ𝑘+1𝑖 ]) .

We then update tape 𝜏 by setting 𝑐𝜏
𝑖+1 [ℎ

𝑗

𝑖
] = 𝛾

𝑗

𝑖
and keeping all other tape cells the same. We

update the head position on tape 𝜏 according to ℎ𝜏
𝑖+1 = ℎ𝜏

𝑖
+ 𝑑𝜏

𝑖
. On the other hand, if 𝑞𝑖 ∈ 𝐹 , the

Turing machine halts and outputs the string of tokens on the output tape from the current head

position on the left up to (but not including) the first 𝑏 on the right. A Turing machine can also

be viewed as a language recognizer simply by saying that reaching a halting state constitutes

accepting (there are other equivalent ways to define language acceptance as well).

Turing machine complexity classes. Let TIME[𝑇 ] be the class of languages recognizable us-

ing at most 𝑂 (𝑇 (𝑛)) steps on a multitape Turing machine. Similarly, let �TIME[𝑇 ] be the same

class but with 𝑂̃ (𝑇 (𝑛)) time (i.e., potentially with polylogarithmic overhead). Let SPACE[𝑆] be

the class of languages recognizable using at most 𝑂 (𝑆) space, i.e., where at most 𝑂 (𝑆) tape cells

are non-empty at any point in the computation.
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3 | Expressivity theory for

transformers

Transformers and related neural architectures are the substrate in which modern language

models are built. While there is certainly more to language models than their architecture (cru-

cially, the data they are trained on and the learning algorithm), analysis of the expressive power

of the architecture on its own has proven a useful way to pin down the computational power and

limitations of language models.

This chapter synthesizes several years of work [MSS22; MS23a; MS23b] establishing upper

bounds on the expressive power of soft-attention transformers into a minimal, general form.

Chronologically, Merrill, Sabharwal, and Smith [MSS22] analyzed AHATs and established non-

uniform TC0 as an upper bound on their expressive power. Improving upon this work, Merrill

and Sabharwal [MS23b] generalized the analysis to soft-attention transformers with log precision

and showed a tighter upper bound of L-uniform TC0, which is substantially more interesting for

reasoning about the limitations of transformers. Finally, Merrill and Sabharwal [MS23a] tight-

ened the upper bound for log-precision transformers to FO-uniform TC0 (the result presented

here is close to this, but more general).

After first proving a general version of the result that transformers are in TC0 (Theorem 3.1),

I discuss how this result reveals computational problems that transformers likely cannot express

(Section 3.4) and consider its implications for interpreting the computation inside transformer
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LMs (Section 3.5). Later chapterswill build on the theoretical foundation in this chapter by consid-

ering how different approaches and architectures extend LM expressivity relative to transformers

(Chapter 4) and discussing how the theoretical limitations represented by Theorem 3.1 might, in

practice, impact transformers’ ability to process language and solve reasoning problems.

3.1 Why universality results are deceiving

Undergraduate deep learning courses often allude to deep learning architectures as univer-

sal function approximators, due to foundational results in the theory of neural networks. For

example, Cybenko [Cyb89] showed that one-layer neural networks with sigmoidal activations

can arbitrarily approximate continuous functions over compact domains, a result that has been

refined in follow-up work [JTX20]. Moving from compact domains to sequence models, Siegel-

mann and Sontag [SS95] showed that basic recurrent neural networks (RNNs)—the predecessors

to transformers—can be Turing-complete, assuming unbounded computation time and precision.

In light of these results, why should we care about understanding the expressive power of neural

architectures like the transformer, if even simpler architectures are already “universal” in some

sense?

The answer lies with the fact that these results rely on assumptions that are unrealistic for se-

quence modeling in order to establish universality. For example, Cybenko’s universal approxima-

tion result applies only to continuous functions over compact domains, not sequences [Cyb89].1

Moreover, the hidden size required by the network could be “astronomical” [Cyb89]. As already

mentioned, Siegelmann and Sontag [SS95] require the precision of the RNN to grow unboundedly

to simulate a Turing machine; in contrast, when LM inference is carried out over long sequences,

the precision remains bounded and small. It turns out that unrealistic assumptions of this form
1When embedding sequences into a compact vector space, some sequence vectors must get arbitrarily close as

the sequence length increases: for any 𝛿 , we can find two sequences with distance at most 𝛿 . Thus, if these sequences
are labeled in {0, 1}, this function need not be continuous.
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are required to establish computational universality: without such assumptions, deep learning

architectures cannot express arbitrary discrete functions over sequences. As our results will later

show, as long as their size and precision remain polynomial in the input sequence length, trans-

formers have clear computational limitations. Moreover, by drawing connections to circuit com-

plexity, we will be able to develop a finegrained theory of the kinds of computation transformers

are capable of and the kinds of computational problems they (likely) cannot solve.

3.2 Prior work: hard-attention transformers

In contrast to universality results, another line of work on the expressive power of neural

networks studied transformers with unique hard attention, which we refer to as hard-attention

transformers for short. Hard attention means that each attention head in the transformer (Sec-

tion 2.1) can only focus on one (i.e., the maximal) position.2 It was shown that hard-attention

transformers are quite limited in power: they cannot express the simple problems of comput-

ing the parity or majority vote of a bit string [Hah20], and, more generally, can only recognize

languages in the circuit complexity class AC0 [HAF22]. These results have since been refined to

yield exact characterizations of the languages recognizable by different variants of hard-attention

transformers in terms of string logics related to linear temporal logic [YCA24; Jer+25]. Overall,

these results reveal that, in contrast to universal approximation claims (cf. Section 3.1), hard-

attention transformers are not computationally universal, and, in fact, cannot express many very

simple computational problems.

However, these strong limitations for hard-attention transformers do not translate to more

realistic transformers with soft attention. While hard-attention transformers cannot compute

majority, a soft-attention transformer can compute majority with a single uniform attention head

[PMB19, Proposition 3.3]. The head’s value vector checks whether the input token is a 1 or 0,
2There are some subtleties for breaking ties if there are multiple maxima, but under various reasonable tie-

breaking schemes, the general characterization within AC0 applies [HAF22].
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which means that it outputs the proportion of 1’s in the input, which can be thresholded to

solve majority.3 This shows that transformers that go beyond hard attention will have express

power beyond AC0, motivating a the general theoretical treatment of soft-attention transformers

developed in this thesis.

3.3 Soft-attention transformers and threshold circuits

A main contribution of this thesis is a theoretical characterization of the expressive power

of soft-attention transformers in terms of the circuit complexity class TC0. As we will see in

Section 3.4, this result has many implications for the computational power and limitations of

transformers. We will first state and prove the main theoretical result for transformers before

returing to a discussion of its implications. The result presented here applies to very general

model of transformers (cf. Definition 2.2): it can use softmax or averaging hard attention, multiple

layers (though the number must be fixed w.r.t. 𝑛), and precision at most polynomial in 𝑛.

Theorem 3.1 ([MSS22; MS23b; MS23a]). Let 𝑇 be a transformer. Then the function computed by

𝑇 can also be computed by an FO-uniform TC0 circuit family.

Proof overview. The high-level idea is to show that each component of the transformer computa-

tion graph (embedding layer, self-attention sublayer, and feedforward sublayer, and unembedding

matrix) can be computed in uniform TC0. Then, we can use the fact that uniform TC0 is closed

under composition [MS23a, Corollary 3.1] to conclude the full transformer is in uniform TC0. □

We break the details of the proof into the following lemmas. The first step is to justify that, if

all components of the transformer are in TC0, then their composition will also be in TC0. This is
3More than fixed precision (e.g., 𝑝 = 𝑐 log𝑛 in Definition 2.1) is crucial here because, otherwise, uniform attention

weights are not representable. In fact, the expressive power of soft-attention transformers with fixed precision
reduces to that of hard-attention transformers [LC25] because fixed-precision soft attention can only attend to a
bounded number of positions [MS23a, Proposition 1].
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straightforward for non-uniform [MSS22] or L-uniform [MS23b] TC0 but requires the following

technical lemma for stronger FO-uniform TC0 [MS23a], a proof of which we omit here.

Lemma 3.2 (Composition, [MS23a], Corollary 3.2). Let G be an FO-uniform, polynomial-size,

constant-depth computation graph family over a finite set of node types 𝔉, where each F ∈ 𝔉 is

specified by an FO-uniform TC0 family. W.l.o.g., for each F , let sizeF (𝑛) be a power of 2 computable

in 𝑂 (log𝑛) time. Then G can be simulated by an FO-uniform TC0 family C.

In line with this lemma, we can observe that the transformer is a uniform constant-depth com-

putation graph family G where𝔉 contains operation for the standard modules of the embedding

layer, layer-normalization component, self-attention sublayer, feedforward sublayer, and output

projection [MS23a, Lemma 1]. We can thus complete the proof by showing that each of these

components is in FO-uniform TC0. First, we justify that the embedding layer can be computed

in FO-uniform TC0:

Lemma 3.3 (Embedding). The transformer embedding layer can be computed in FO-uniform TC0

as a function of some input string𝑤1 . . .𝑤𝑛 ∈ Σ∗.

Proof. We justify that (each bit of) the embedding E[𝑤𝑖] + 𝜋 (𝑖) for 𝑤𝑖 can be defined in FO[M],

which is equivalent in expressive power to FO-uniform TC0 [MIS90]. To define the 𝑗th bit of the

token embedding in FO[M], we construct a clause for each 𝜎 ∈ Σ of the form ¬𝑄𝜎 (𝑖) ∧ E[𝜎] 𝑗 .

Thus, this returns E[𝑤𝑖] 𝑗 . To compute the 𝑗th bit of the position embedding 𝜋 (𝑖) 𝑗 , we use the fact

that 𝜋 (𝑖) can be approximated to polynomial precision in FO-uniform TC0 since it is an analytic

function with a convergent rational power series [RT92]. Thus, we can compute it over numbers

with precision at most poly(𝑛) in TC0. Finally, we can implement addition in FO (and thus also

FO-uniform TC0), so we conclude that the embedding of𝑤𝑖 can be computed in TC0. □

We next analyze the layer-normalization component, which is used at the beginning of each

sublayer in a pre-norm transformer (Definition 2.2). We will show that this module can be com-

puted in uniform TC0.
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Lemma 3.4 (Layer normalization). Layer normalization can be computed in FO-uniform TC0 as a

function of the previous hidden state h𝑖 .

Proof. Layer normalization involves the arithmetic operations of addition, multiplication, divi-

sion, and square root. Binary (i.e., between two numbers) addition and multiplication are trivial

to implement in uniform TC0. Exact division was shown to be in uniform TC0 in a landmark re-

sult [Hes01], and square root can be approximated to polynomial precision in uniform TC0 [RT92;

Chi24]. Thus, we can conclude that layer-normalization over polynomial-precision rationals can

be computed in uniform TC0. □

Next, we analyze the softmax-attention sublayer, which is the crucial component of the trans-

former architecture in the sense that it is the only part that mixes information across tokens. Im-

portantly, the way that the attention mechanismmixes information from tokens can be simulated

in parallel in TC0, a fact that is not true for other architectures like RNNs.

Lemma 3.5 (Self-attention). Any multihead self-attention sublayer can be computed by an FO-

uniform TC0 circuit family at a function of the normalized hidden states ĥ1, . . . , ĥ𝑖 .

Proof. We will first simulate a single head a𝑖,𝑘 (cf. Definition 2.2, omitting layer superscripts):

a𝑖,𝑘 =

𝑚∑︁
𝑗=1

exp(1/𝜏 · q⊤
𝑖,𝑘
k 𝑗,𝑘)

𝑍𝑖,𝑘

· v 𝑗,𝑘 .

First, it is straightforward that we can compute each query-key inner product in TC0, and we can

also divide by 𝜏 [Hes01]. We can then approximate exp to polynomial precision in uniform TC0

[RT92; Chi24]. So, for each 𝑖, 𝑗 we can compute 𝑠𝑖, 𝑗,𝑘 = exp(1/𝜏 ·q⊤
𝑖,𝑘
k 𝑗,𝑘) over polynomial-precision

rationals in uniform TC0. Next, we can each 𝑍𝑖,𝑘 as a sum of these terms (w.r.t. 𝑗 ) because iterated

addition is in FO-uniform TC0 [Imm98]. For each 𝑖, 𝑗 , we then compute 𝑠𝑖, 𝑗,𝑘
𝑍𝑖,𝑘

· v 𝑗,𝑘 in uniform

TC0, again using the fact that we can compute division [Hes01]. We then use iterated addition

to compute a sum over 𝑗 over these terms, yielding a𝑖,𝑘 . Finally, having computed each attention

18



head, we can easily compute the output projection matrix and residual connection in uniform

TC0. We thus conclude that the whole self-attention sublayer can be simulated in FO-uniform

TC0. □

Finally, it is straightforward that the feedforward sublayer can also be computed in TC0, since

they just involve binary addition, binary multiplication, and nonlinearities:

Lemma 3.6 (Feedforward). Any feedforward sublayer or output projection matrix can be computed

by an FO-uniform TC0 circuit family at a function of the normalized hidden state ĥ𝑖 .

In fact, with ReLU nonlinearities, the stronger result that feedforward subnetworks can be

simulated in FO-uniform AC0 holds, though TC0 may be required to simulate more complex

activation functions. Either way, we can put together all these results to conclude by Theorem 3.2

that the entire transformer T can be simulated in TC0.

Theorem 3.1 has many interesting implications. First, we will consider how, under standard

complexity conjectures, it implies that transformers cannot express many inherently sequential

problems (Section 3.4). Then, we will discuss the implication that the logic FO[M] can be viewed

as a “programming language” provably capable of representing any behavior that a transformer

can express (Section 3.5), which may be of interest for interpretability research.

3.4 A tour of problems transformers likely cannot express

Combining Theorem 3.1 with different results in complexity theory allows us to identifymany

computational problems that, under standard complexity conjectures, fixed-depth transformers

cannot express, for large enough input lengths. I will now highlight some canonical examples

of such problems that are related to language understanding and reasoning, summarized in Fig-

ure 3.1. This list is not exhaustive: work on transformer expressivitymay providemore discussion

of other problems [MS23b; Str+24]. There are also many more problems related to specific classes
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P
⋆Horn satisfiability

⋆linear equations & programming

NC
context-free languages

NL
⋆directed graph conn.

L
⋆undirected graph conn.

NC1

⋆regular languages
⋆boolean formula eval.

TC0

Dyck languages
solvable regular languages

Theorem 3.1: fixed-depth transformers

AC0

star-free regular languages
pairwise addition

Figure 3.1: Hierarchy of circuit complexity classes within P, including TC0. Dotted borders represent
conjectured separations between classes, and⋆indicates problems complete under many-one reductions.
By Theorem 3.1, complete problems in classes above TC0 cannot be expressed by transformers unless their
class collapses to TC0, which allows us to identify problems transformers likely cannot express.
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in the broader complexity literature, and it is often simple to demonstrate the inexpressibility of a

new, specific problem to a more general problem by constructing a reduction [cf. MPS24, Section

3.2]. Later on in Chapter 5, I will more speculatively discuss the implications of these formal

hardness claims for transformers’ ability to implement aspects of language understanding and

reasoning that are not as well defined as these model problems.

3.4.1 Regular languages, finite monoids, and state tracking

Regular languages are a fundamental class of formal languages that have been studied from a

variety of perspectives and with different motivations. Originally motivated as a computational

model of biological neural networks [MP88], the regular languages are also a model of some of

the simple syntactic patterns in natural language [Cho56], and they can also be naturally used

to formalize AI concepts like state tracking and world modeling [Liu+23b; MPS24; Vaf+24]. This

last perspective on regular languages, in particular, motivates analyzing the degree to which LM

architectures can express regular language recognition.

Fortunately, the complexity of recognizing regular languagewith circuits has been extensively

studied [KMR67; IL95], so we can use Theorem 3.1 to understand the capabilities of transformers

to recognize different kinds of regular languages. In general, the circuit complexity of regular

language recognition can be related to the algebraic structure of its transition monoid, which

controls the degree to which the automaton the regular language represents can be parallelized. If

the transition monoid satisfies an algebraic condition known as solvability (which can be thought

of as generalizing commutativity), recognition is in TC0. On the other hand, if the transition

monoid is not solvable, recognition is NC1-complete, and thus by Theorem 3.1 such languages

cannot be recognized by fixed-depth transformers. One canonical example of a non-solvable

regular language is the word problem for the permutation group 𝑆5, which captures the task

of permuting permutation over 5 elements. Since this language is non-solvable, Theorem 3.1

implies this language, which is closely related to state tracking [KS23; MPS24]. This suggests
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a fundamental limitation of fixed-depth transformers for state tracking [Liu+23b; MPS24]: see

Section 5.4 for further discussion.

3.4.2 Recognizing context-free languages

Context-free languages, which generalize regular languages, have been traditionally argued

to be a good formal model of the hierarchical structure in natural languages [Cho56]—moreover,

they are explicitly used to capture such hierarchical structure in programming languages and

other areas. Already from our regular languages result, we knew that transformers could not

recognize context-free languages unless TC0 = NC1, and that log-depth should be required to

recognize some context-free languages. But context-free recognition is likely harder than this:

from a circuit complexity perspective, the tightest upper bound for context-free recognition is

SAC1 ⊆ AC1 [Ruz81; Ven91]. This means context-free free recognition could be harder than

regular language recognition for transformers, with regular language recognition already being

inexpressible by transformers of context depth (assuming TC0 ≠ NC1).

On the other hand, while not all context-free languages can be recognized by transformers,

there are some interesting subclasses for which recognition is in TC0 and expressible by fixed-

depth transformers. Dyck languages, often taken as a canonical example of hierarchical struc-

ture due to the Chomsky-Schützenberger Theorem [CS59] are such an example: 𝑘-Dyck falls

into TC0 for any 𝑘 (in fact, it is TC0-complete), and can moreover be expressed by some, slightly

idealized model of transformers with constant depth [WGY21; Yao+21]. Thus, while Dyck lan-

guages are often taken as canonical context-free languages, they are not necessarily the hardest

for circuits or transformers—indeed, there are canonical context-free languages that are formally

harder [Gre73], which intuitively are distinguished by being more ambiguous. In Section 5.3.1,

we will return to the potential implications of this circuit complexity viewpoint for the ability of

transformers to represent natural-language syntax.
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3.4.3 Evaluating compositional formulas and circuits

A natural compositional problem studied in circuit complexity is formula evaluation: given

a hierarchically structured boolean formula as input, the goal is to return the truth value of the

formula. This problem is NC1-complete [Bus87], and thus, by Theorem 3.1, cannot be expressed

by constant-depth transformers unless TC0 = NC1. It is an open question whether log-depth

transformers can evaluate boolean formulas. This result generalizes to formulas over any finite

domains, and also implies formulas over infinite domains cannot be expressed—however, formu-

las over infinite domains may be even harder than NC1-complete.

A simple extension of formula evaluation is circuit evaluation: here, the input is a boolean

string 𝑥 of length 𝑛 along with a circuit 𝐶 that takes 𝑛 inputs. The goal is to return 𝐶 (𝑥), i.e.,

the circuit 𝐶 evaluated on 𝑥 . While superficially similar to boolean formula evaluation, circuit

evaluation is actually significantly harder: it is P-complete, and thus, by Theorem 3.1, it cannot

be expressed by constant-depth transformers (unless TC0 = P) or even polylogarithmic depth

transformers (unless NC = P). Thus suggests that circuit evaluation is not feasible for transform-

ers without chain of thought in practice. However, if the depth of the transformer is allowed

to grow linearly with the circuit depth (in the worst case, polynomial in 𝑛), then [MS23b] show

transformers can solve circuit evaluation. In other words, transformers of fixed depth can solve

circuit evaluation if the circuit depth is guaranteed to be fixed as well.

Beyond evaluating formulas and circuits, an interesting problem related to code reasoning

is model checking: given some code and a property about it expressed in logic, verify whether

that property holds. In future work, it would be interesting to formally explore the difficulty of

different types of model checking for transformers.
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3.4.4 Reasoning over graphs

Many types of reasoning, including pathfinding and logical inference, can be formalized as

connectivity questions over graphs. To capture the structure of these problems, complexity the-

orists have defined the graph connectivity (or reachability) problem as follows: a graph as well

as two nodes 𝑠, 𝑡 are given as input, and the goal is to determine whether there is a path in the

graph from 𝑠 to 𝑡 . For undirected graphs, graph connectivity is L-complete under NC1 reductions

[CM87; Rei08; Str+24], and, for directed graphs, it is NL-complete under FO reductions [Imm98,

Theorem 3.16]. Thus, by Theorem 3.1, constant-depth transformers cannot solve general graph

connectivity questions unless TC0 = NL, although an interesting question remains about what

graph-theoretic properties might make this problem more tractable.

3.4.5 Other problems

Even without Theorem 3.1, NP-complete problems cannot be expressed by transformers un-

less P = NP, as transformers can be run in polynomial time. This means, for instance, that

satisfiability of arbitrary boolean formulas cannot be determined by a transformer. Even the

restricted variant of Horn satisfiability, which is efficient to solve with a Turing machine, is P-

complete, which means it cannot be expressed by transformer LMs unless TC0 = P. Many other

problems across domains are known to be P-complete, including linear programming, universal

context-free recognition (given grammar 𝐺 and string 𝑤 , does 𝐺 → 𝑤?), and various questions

related to reward computation and reinforcement learning [GHR91]. In general, unless TC0 = P,

Theorem 3.1 shows none of these inherently sequential problems can be solved by transformers

without CoT, while, with enough CoT steps, we will see that they become expressible (Theo-

rem 4.2).
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3.5 A logical view on transformer expressivity

The main result in Theorem 3.1 characterizes the computational power of transformers in

terms of circuits. Through the research program of descriptive complexity theory [Imm98], close

connections have been revealed between circuit complexity and logic, which we can leverage to

characterize transformers in terms of logic. In particular, we will be able to relate transformers

to a variant of first-order logic over strings augmented with majority quantifiers, which we call

FO[M] (cf. Section 2.3). Classically, the set of languages definable in FO[M] is exactly FO-

uniform TC0 [MIS90]. It thus follows from Theorem 3.1 that any transformer can be translated

to a logical “program” in FO[M] [MS23a]:

Corollary 3.7. For any transformer T : Σ∗ → Σ and token 𝜎 ∈ Σ, there exists a sentence in FO[M]

that defines the language {T (𝑤) = 𝜎 : 𝑤 ∈ Σ∗}.

In this sense, FO[M] can be understood as a “programming language” provably capable of

expressing the behavior of any transformer, whether it uses unique hard attention, averaging

hard attention, or softmax attention [MS23a]. As mentioned in Section 3.2, FO (without majority)

is capable for expressing hard-attention transformers. In the other direction, it is also possible

to develop logics that can be compiled into transformers. Specifically, Yang and Chiang [YC24]

show that any language expressible in C-RASP, a restriction of FO[M], can be expressed by

soft-attention transformers. C-RASP restricts FO[M] so that predicates can only be unary (cf.

Section 2.3). Thus, the binary predicates bit(𝑖, 𝑗) and 𝑖 < 𝑗 are removed. Moreover, quantifiers are

restricted to have either the form ∃𝑖 < 𝑛[𝜙 (𝑖)] or ∃ 𝑗 < 𝑖 [𝜙 ( 𝑗)]—crucially, 𝜙 is a unary predicate

in either case. Intuitively, restricting all predicates to be unary ensures that the transformer

has enough memory to store all variable configurations, which ensures that the transformer can

successfully resolve a C-RASP formula. Understanding and potentially closing the gap between

FO[M] and C-RASP is an interesting open question for future research: can we potentially arrive
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at a single logical formalism that exactly characterizes the expressive power of transformers?

Can different logical formalisms capture finegrained differences in transformer expressivity like

the relative power of softmax and averaging hard attention [Yan+24a]?

In addition to providing a different, potentially more interpretable perspective on transformer

expressivity, viewing transformers in terms of logic also appears to be a promising way to under-

stand the interplay betweeen expressivity and learnability. It has been hypothesized transformers

learn to length-generalize on a language if and only if it is definable in C-RASP [Hua+25b]. Re-

lated to this, [Hu+25] “pre-pretrain” transformer LMs on various formal languages definable in

C-RASP and FO[M] before pretraining on natural language, finding that several formal languages

confer a useful inductive bias for learning more efficiently from natural language data. They hy-

pothesize that effective pre-pretraining languages should both be representable by transformers

and encode hierarchical structure similar to the syntax of natural language. These works provide

case studies in how the logical view of transformer expressivity can be a useful bridge from the

expressivity viewpoint to reasoning about the inductive biases and generalization behavior of

transformers.
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4 | Extending language models’

expressivity

In Chapter 3, we saw how transformers are limited to expressing on highly parallelizable

computation: formally, languages in the class TC0 (Theorem 3.1). It is important to understand

the conditions in which Theorem 3.1 applies: it says that, given a fixed-depth transformer, if it

reads some input and must immediately produce an output, it can only solve problems in TC0.

This is certainly one way that transformers are used, but, sometimes, transformers can be used

in other, more complicated ways in practice. For example, one can allow the transformer to

generate a scratchpad or chain of thought before its final answer, or potentially increase the

depth of the model with the length of the problem input. Another, more extreme, option, is to

use a different deep learning architecture in an LLM than a transformer. Here, we analyze how all

these generalizations change transformers’ expressive power, with an eyes towards guiding the

design of LM architectures and algorithms with greater expressivity than today’s transformers.

4.1 Transformers with chain of thought

As we have seen in Chapter 4, transformers are constrained to performing highly paralleliz-

able computation. One minimal way to extend them, then, is to make them more sequential by

allowing them to iteratively generate and read tokens before eventually producing a final answer.
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This approach of extending transformers with autoregressive generation is often called chain of

thought (CoT; [Wei+22a]) or scratchpad [Nye+22], though we will refer to it as CoT for consis-

tency. Originally, chain of thought involved training LLMs to emulate reasoning traces before

producing an answer, and, then, at inference time, using the models to generate reasoning traces.

Later reasoning models like GPT o1 and DeepSeek R1 leverage a CoT similarly at inference time,

except that the model is trained in a different way, relying on reinforcement learning rather than

explicit next-token supervision. In either case, the central role that chain-of-thought plays for im-

proving LLM reasoning performance motivates analyzing its impact on the computational power

of models. Moreover, at the level of intuition, CoT adds to transformers exactly what TC0 lacks:

whereas TC0 computation has constant depth (Theorem 3.1), the computation graph of a trans-

former with CoT deepens for longer sequences because the output from each token flows into the

input of the next token. Indeed, we show that this deepening of the computation graph allows

transformers with CoT to solve inherently sequential problems conjectured to be outside TC0.

4.1.1 Defining CoT

Abstracting away from the impact of a CoT on learning (we will return to this later), we will

define the computational model of a transformer (or other LLM) augmented with a CoT. Given

any generative model 𝑓 : Σ∗ → Σ, we can map an input 𝑥 ∈ Σ∗ to output 𝑦 ∈ Σ using 𝑡 (𝑛) steps

of chain of thought according to the recurrent process:

𝑧0 = 𝑥, 𝑧𝑖+1 = 𝑧𝑖 · 𝑓 (𝑧𝑖), 𝑦 = 𝑓 (𝑧𝑡 ( |𝑥 |)).

Definition 4.1. We let CoT[𝑇 ] be the class of languages recognizable by an AHAT with masked

pre-norm (Definition 2.2) using 𝑂 (𝑡 (𝑛)) CoT steps, assuming a beginning-of-sequence token.

Under this definition, the amount of CoT is tied to the length of the input, such that longer

inputs can allowmore CoT steps. Some natural instantiations for 𝑡 (𝑛) could be logarithmic (log𝑛),
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linear (𝑛), or polynomial (𝑛𝑐 )—transformers without CoT can be recovered by setting 𝑡 (𝑛) = 0.

We will be able to characterize and compare the power of CoT in each of these cases, relating

CoT steps as a resource to standard TIME and SPACE complexity classes (cf. Section 2.4).

4.1.2 CoT extends transformer expressivity

Our theoretical study of CoT [MS24b] reveals that it expands the computational power of

transformers to contain problems in higher complexity classes likely above TC0. From a more

finegrained perspective, we understand CoT steps as a computational resource akin to time or

space for Turing machines. Existing work analyzing encoder-decoder transformers showed that

slightly idealized transformers could use decoder steps to simulate a Turing machine [PMB19].

Related to this, we show that a transformer can use 𝑡 CoT steps to simulate 𝑡 steps of runtime on

a Turing machine:

Theorem 4.2 ([MS24b], Theorem 2). TIME[𝑡] ⊆ CoT[𝑡] .

Proof sketch. We construct a transformer decoder that uses a single decoding step to simulate

each Turing machine step using 𝑂 (log 𝑡) precision. The main difficulty is representing a Turing

machine tape in a sequence of transformer state vectors so that the transformer can always cor-

rectly reconstruct the value on the tape at the current head position. The key idea is to write

the previous Turing machine “diff” 𝛿𝑖−1 (i.e., the output of the transition function) at each step

𝑖 . In the first layer, the transformer will reconstruct ℎ𝜏
𝑖
, the current head position on tape 𝜏 , via

a uniform-attention counter [BAG20]. Then, we can use the head position to retrieve the last

diff written at this head position using an induction head-like construction [Ols+22], where we

attend to 𝑗 such that ℎ𝜏
𝑖
= ℎ𝜏

𝑗−1 and retrieve 𝛿 𝑗 . Implementing this retrieval, similar to pointer

matching, relies heavily on the layer-norm hash gadget [MS24b, Section 3.1]. Overall, by com-

bining uniform attention with hard attention, this construction allows us to simulate a Turing

machine for 𝑡 steps in a distributed way using 𝑡 steps of CoT. □
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Theorem 4.2 establishes that CoT steps allow transformers to implement sequential compu-

tation that a Turing machine can express with enough CoT steps. Moreover, transformers with

linear or more CoT can recognize regular languages, which is NC1-complete:

Corollary 4.3 (cf. [MS24b], Theorem 1). CoT[𝑛] can recognize any regular language, which is

NC1-complete under FO reductions [IL95].

Assuming TC0 ≠ NC1, regular language recognition is outside TC0, and thus linear CoT ex-

tends the expressive power of transformers. With more than linear CoT, more complex problems

become solvable:

Corollary 4.4. CoT[𝑛2] contains directed graph connectivity, which is NL-complete under FO re-

ductions [Imm98].

Classically, graph connectivity can be solved in linear time via search [Wig92]. However,

implementing this linear-time algorithm on a multitape Turing machine (i.e., without random

access) potentially requires quadratic overhead in the runtime [MS24b], which is how we arrive

at the quadratic time characterization for graph connectivity. Thus, we obtain the following

general takeaway:

Corollary 4.5 (Informal). If some problem has a standard (i.e., random-access) algorithm that runs

in time at most 𝑂 (𝑡), a transformer can implement this algorithm with at most 𝑂 (𝑡2) CoT steps.

4.1.3 Limitations of transformers with CoT

We have seen that CoT extends the expressive power of transformers outside of TC0, assum-

ing TC0 ≠ NC1. But how far does this go? Can we give an upper bound for the class of languages

recognizable by transformers with 𝑡 steps of CoT? One natural upper bound comes from the fact

that transformers can be run on a multitape Turing machine in quadratic time (with a polylog-

arithmic factor of overhead for floating point arithmetic operations). This yields the following

relationship:
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Theorem 4.6 ([MS24b], Theorem 3). CoT[𝑡] ⊆ �TIME[𝑡2 + 𝑛2] .

While simple, Theorem 4.6 is useful for establishing limits on the expressive power of trans-

formers with linear or more CoT steps, showing that 𝑡 CoT steps are worth at most roughly 𝑡2

TM steps. If we allow polynomial CoT steps, this is just a polynomial overhead in the number of

Turing machine steps, so, combined with Theorem 4.2, we obtain:

Corollary 4.7. Polynomial CoT (i.e.,
⋃∞

𝑐=1 CoT[𝑛𝑐]) is exactly P.

To get a more refined understanding of the limitations of transformers with CoT, we also

consider another, more involved way to characterize an upper bound class for CoT[𝑡] in terms of

Turing machine space:

Theorem 4.8 ([MS24b], Theorem 4). CoT[𝑡] ⊆ SPACE[𝑡 + log𝑛] .

Proof. Since log-precision transformers can be simulated in uniform TC0 [MS23b], they can be

simulated in L, i.e., with at most 𝑐 log𝑛 space overhead on inputs of size 𝑛. To compute 𝑡 (𝑛)

intermediate decoding steps of a transformer, we store a buffer of at most 𝑡 (𝑛) generated tokens,

which has size𝑂 (𝑡 (𝑛)). To compute the next token, we call the transformer with an input of size

𝑂 (𝑛 + 𝑡 (𝑛)) using at most 𝑐 log(𝑛 + 𝑡 (𝑛)) space overhead. We then clear the memory used and

append the finite token generated to the input buffer. It follows from this algorithm that

CoT[𝑡] ⊆ SPACE[𝑡 + 𝑐 log(𝑛 + 𝑡)]

⊆ SPACE[𝑡 + log𝑛] . □

Theorem 4.8 yields several useful results beyond Theorem 4.6. First, following from the equiv-

alence of context-sensitive languages with linear space [Kur64], we obtain:

Corollary 4.9. CoT[𝑛] is contained within the context-sensitive languages.
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Thus, linear CoT likely extends transformers’ expressive power outside TC0 (Theorem 4.3),

but at most allows transformers to recognize context-sensitive languages.

Beyond this, Theorem 4.8 allows us to understand the expressivity of transformers with sub-

linear CoT:

Corollary 4.10. CoT[log𝑛] ⊆ L.

In fact, this result can be improved upon to show that CoT[log𝑛] ⊆ TC0 [Li+24b; MS24a].

Thus, while linear CoT extends expressivity outside TC0 (assuming TC0 ≠ NC1), logarithmic CoT

does not. This suggests that close to linear CoT may be required to get an expressivity benefit

from CoT, although it is an open question whether some intermediate function between log𝑛 and

𝑛 may yield expressivity beyond TC0.

4.1.4 Discussion: implications of CoT expressivity results

In contrast to older work augmenting recurrent networks with differentiable data structures

to make them Turing-complete [GWD14], transformers can simulate Turing machines simply

with the addition of CoT. Putting all of our results related transformers and Turing machines

together yields the following:

TIME[𝑡] ⊆ CoT[𝑡] ⊆


�TIME[𝑡2 + 𝑛2]

SPACE[𝑡 + log𝑛] .

This is a fairly general characterization: 𝑡 CoT steps roughly buys between 𝑡 and 𝑡2 steps on a

multitape Turing machine. We can leverage this to understand the power of transformers with

different CoT budgets:

1. With logarithmic CoT, transformers can recognize at most L (Theorem 4.10). In fact, it turns

out they cannot recognize languages outside TC0, suggesting they obey similar limitations
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to transformers with no CoT.

2. With linear CoT, transformers can recognizeNC1-complete languages (Theorem 4.3). Thus,

these transformers can likely solve problems beyond TC0 and are more expressive than

transformers with no CoT. At most, linear-CoT transformers can recognize the context-

sensitive languages (Theorem 4.9).

3. With polynomial CoT, transformers converge exactly to polynomial-time Turing machines:

i.e., they recognize exactly P (Theorem 4.7).

An interesting open question is the extent to which this characterization can be tightened.

There is probably not much opportunity to tighten the time upper bound (Theorem 4.6), as atten-

tion is fundamentally quadratic. On the other hand, there is some opportunity to tighten either

the time lower bound (Theorem 4.2) or the space upper bound (Theorem 4.8), and there is an in-

teresting connection between these results. For 𝑡 (𝑛) ≥ Ω(log𝑛), Merrill and Sabharwal [MS24b]

remark:1

Given our TIME[𝑡] lower bound, the tightest possible space upper bound without making

fundamental complexity advances would be SPACE[𝑡/log 𝑡] [HPV77]. Conversely, our

lower bound can only be tightened to TIME[𝑡 log 𝑡].

Excitingly, fundamental complexity advances have been made since Merrill and Sabharwal

[MS24b] was published, for the case where 𝑡 ≥ Ω(𝑛). Williams [Wil25] shows that TIME[𝑡] ⊆

SPACE[
√︁
𝑡 log 𝑡], refining the result of Hopcroft, Paul, and Valiant [HPV77]. Thus means that

Theorem 4.8 could in principle be improved to CoT[𝑡] ⊆ SPACE[
√︁
𝑡 log 𝑡], or that Theorem 4.2

could in principle be improved to TIME[𝑡2/log 𝑡] ⊆ CoT[𝑡]. While a refined space upper bound

is possible in principle, we believe it would not follow straightforwardly fromWilliams [Wil25]’s

approach, which relies heavily on the locality of Turing machine computation. Since each CoT
1Quoted mathematical notation and citation formatting been made consistent with that used here.

33



step on a transformer is not local in the sense that it can aggregate global information from all

previous tokens, it is not clear how this technique could be extended to transformers with CoT.

For this reason, it may be more likely that 𝑡 CoT steps is more powerful than 𝑡 Turing machine

steps, and perhaps it will be possible to prove this.

4.2 Padded and looped transformers

CoT is one way to dynamically allocate computation in a transformer at inference time, and it

takes a particularly sequential nature. However, there are other ways to allow dynamic compu-

tation in a transformer, and it is interesting to consider how they compare to chain of thought in

terms of changing the models expressivity. Two of the most natural ways are padding, or adding

blank tokens (rather than generated tokens) onto the end of the model input buffer, and looping,

or repeating a block of layers a variable number of times. As we will see, these approaches map

closely onto the notions of width and depth in circuit complexity, but in a uniform way, i.e., the

width and depth can be expanded without adding any new parameters. We will analyze theoreti-

cally how these uniform width and depth knobs allow transformers to solve more problems than

they (likely) could otherwise.

4.2.1 Padding tokens

Various works [Goy+24; PMB24] have considered how extending a transformers’ input buffer

with some blank tokens might improve its computational power. Padding tokens added to trans-

formers can be defined as a restricted form of CoT where the tokens on the CoT must be some

special “blank” token rather the token previously generated by the LM. Unlike standard CoT,

padding tokens do not add any sequential dependencies to the transformer’s computation graph,

meaning inference remains fully parallelizable.

Just like we can talk about the number of CoT tokens as a resource, we can talk about the
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number of padding tokens. Transformers with padding tokens remain in TC0 as long as the

number of padding tokens is polynomial in the input length [MS23b; MS23a; Chi24]. However,

this does not mean that padding tokens are useless: they do appear to extend the expressivity of

transformers within TC0. In fact, with polynomial padding tokens, the following theorem shows

that transformers can recognize all of TC0:

Theorem 4.11 ([MS25]). An FO[M2] formula with 𝑘 distinct variables and nesting depth 𝑑 can be

computed by AHATs with masked pre-norm using 𝑛𝑘 padding and (fixed) depth 𝑑 .

Mix Barrington, Immerman, and Straubing [MIS90] show that FO-uniform TC0 is definable

by FO formulas with M2 quantifiers: notably, bit is not necessary in the definition, unlike with

standard FO[M]. Thus, it follows from Theorem 4.11 that transformers can recognize all of TC0:

Corollary 4.12. Masked pre-norm AHATs with polynomial padding recognize exactly FO-uniform

TC0.

These results show that adding padding is sufficient to close the (likely) expressivity gap

between unpadded transformers and TC0. Intuitively, padding expands the width of a circuit,

or, in logical terms, allows the transformer to quantify over assignments for a larger number of

variables. With an unbounded polynomial number of padding tokens, this expansion of the width

is sufficient to recognize any language in TC0, and, with 𝑂 (𝑛𝑘) padding tokens for bounded 𝑘 , it

enables simulating formulas with up to 𝑘 variables.

4.2.2 Looped transformers

Padding is a way to grow the circuit width of a transformer uniformly, i.e., in a way that

does not require adding new parameters for larger input lengths. Increasing the width polyno-

mially does seem to add expressive power, but it cannot add expressivity beyond TC0. To gain

expressivity beyond TC0, we must instead aim to increase the depth of the transformer. One
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natural way increase depth uniformly is to loop a certain block of layers a variable number of

times (depending on input sequence length 𝑛). This idea goes under several names (e.g., universal

transformers), but we will refer to this model as a looped transformer. We will show that minimal

looping can add expressivity to transformers, allowing them to solve problems outside TC0. By

mixing looping and padding, we can expand the expressivity even further, all while maintaining

a transformer model that is relatively parallelizable.

We define looped transformers with depth 𝑑 (𝑛) in the natural way. A looped transformer has

a fixed list of layers divided into three blocks: a “setup” block that runs first, a “looped block” that

is repeated 𝑑 (𝑛) times, and a “tear-down” block of depth that runs after the final looped block.

Note that a𝑑 (𝑛)-depth looped transformer is a special case of a𝑂 (𝑑 (𝑛))-depth non-uniform trans-

former (whose parameters can depend on 𝑛) with a specific uniform structure. With 𝑑 (𝑛) = 𝑂 (1),

a looped transformer is equivalent to a general fixed-depth transformer. We are especially inter-

ested in log-depth looped transformers, which allow only a minimal increase in depth, meaning

they are still relatively parallelizable in practice. Our first result shows that log-depth looped

transformers (without any padding tokens) can recognize any regular language:

Theorem 4.13 ([MS24a], Theorem 4.1). Let 𝐿 be a regular language over Σ and $ ∉ Σ. Then there

exists a log-depth looped AHAT with masked pre-norm that, on any string 𝑤$, recognizes whether

𝑤 ∈ 𝐿 when unrolled to ⌈log2 |𝑤 |⌉ depth.

Proof sketch. The full proof [MS24a] follows Liu et al. [Liu+23b] in implementing the log-depth

transition monoid construction for regular language recognition. However, we implement this

in a uniform looped way (with a fixed set of parameters for all 𝑛), whereas Liu et al. [Liu+23b]

require non-uniform parameters that can depend on 𝑛. The core technical innovation for show-

ing the uniform result is to show that integer division and remainder can be implemented by a

uniform fixed-depth transformer. This is useful as a subroutine for implementing the routing in

the transition monoid construction. □
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Figure 4.1: Figure taken fromMerrill and Sabharwal [MS24a]. Strong linear fits imply theory/experiment
match for modeling the impact of depth (left, 𝑑 = 4.8 log2 𝑛 − 15.8 with 𝑟 2 = 0.93) and width (right,
𝑛 = 7.2 log2𝑤 − 41.7 with 𝑟 2 = 0.98) on effective context length for the 𝐴5 state tracking task, a canonical
hard regular language recognition problem. As predicted by Theorem 4.13, to recognize strings of length
𝑛, depth only needs to increase minimally ∝ log𝑛 while width must increase drastically as exp(Θ(𝑛)).

Because recognizing some regular languages isNC1-complete, it follows that log-depth looped

transformers are more powerful than fixed-depth transformers under standard complexity con-

jectures:

Corollary 4.14. If TC0 ≠ NC1, log-depth looped AHATs are strictly more powerful than fixed-depth

AHATs.

Empirical results suggest that, in line with Theorem 4.13, log depth is necessary and sufficient

to recognize regular languages with transformers. Empirically, we train transformers of varying

depths and widths on the 𝐴5 word problem, an NC1-complete regular language. For each trans-

former, we then measure 𝑛, the maximum length to which the transformer can solve regular

language recognition on a test set. As shown in Figure 4.1, there is a strong linear fit between

log𝑛 and the transformer’s depth, in accordance with Theorem 4.13. On the other hand, if we

vary width instead of depth, there is a strong linear fit between 𝑛 and log width. This suggests

that while minimal, logarithmic increase in depth is sufficient to recognize regular languages

over long sequences, it is intractable to increase width to enable regular language recognition, in

accordance with the predictions of our expressivity analysis.

These results show log depth can expand the power of transformers for regular language
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recognition, which is closely related to state tracking (cf. Section 5.4), but what are the limits of

how it can help for other computational capabilities? To gain a general understanding, we study

the expressivity of transformers with both log𝑘 𝑛 looping and poly(𝑛) padding. Like CoT, these

are both ways to uniformly extend the computational resources of the transformer at inference

time (varying depth and width, respectively), but, in contrast to CoT, both of these resources

preserve the relative parallelism of the transformer computation, at least in theory. Thus, the

computational power of this model of transformers represents the best hope for what transform-

ers could achieve without some explicit sequential extension like CoT.

We can characterize the computational power of transformers with looping and padding in

terms of first-order logic with majority quantifiers (cf. Sections 2.3 and 3.5):

Theorem 4.15 ([MS25]). For 𝑘 ≥ 1, log𝑘-depth looped, poly(𝑛)-padded AHATs with masked pre-

norm recognize exactly L-uniform TC𝑘 .

Theorem 4.15 suggests that log-depth looped transformers with padding recognize exactly

TC1. Moreover, considering arbitrary polylogarithmic-depth looping, Theorem 4.15 shows we

can represent exactly the class NC. This represents the fundamental limit for what computation

is parallelizable: it contains many somewhat parallelizable problems thought to be outside TC0

(e.g., recognizing regular and context-free languages), but, unless NC = P, it does not contain

any P-complete problems (cf. Section 3.4.5). Thus, we see that looping and padding are sufficient

to extend the computational power of transformers substantially beyond TC0 while preserving

parallelism, though they do not increase the power to the same degree as polynomial CoT, which

converges to P.

4.2.3 Discussion: uniform knobs for transformer depth and width

In summary, the results in this section show that padding tokens and looped layers can be un-

derstood as uniform compute knobs for expanding the computational power of transformers for
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sequential reasoning problems. Growing the depth of a transformer by a factor of only Θ(log𝑛),

it is possible to extend the expressive power of transformers outside of TC0, which is not the

case with Θ(log𝑛) CoT steps. With polynomial padding and polylogarithmic looping, we can ex-

tend the power of transformers all the way up toNC. Whereas CoT would reach further to P, this

comes at the loss of parallelism, whereas padding and looping preserve parallelism to extent. This

suggests that there is massive theoretical potential for dynamically extending the computational

power of transformers via looping and padding, but a question remains about whether this can

be made into a practical method. For example, it could be the case that it is hard for transformers

to learn how to effectively use padding tokens or looped layers: perhaps additional supervision

provided during finetuning makes CoT easier to use. Better understanding these practical details

is an interesting open question for future work.

4.3 Parallelizable recurrent architectures

Another recent question in the development of LM architectures is whether it is possible to

move away from the transformer back towards a sequence modeling architecture based on recur-

rence. Before transformers, recurrent neural networks (RNNs), based on the idea of processing

strings token by token, were the dominant neural approach for processing language. This kind

of recurrent processing is arguably more natural for sequential data compared to attention, but

the landmark transformer paper established that attention-only architectures could outperform

recurrent networks will achieving greater parallelism, which is important for scaling them up

on large datasets [Vas+17]. But attention is not without conceptual drawbacks: inference on

long sequences requires more memory than with RNNs, and Theorem 3.1 reveals that attention

fundamentally cannot express certain kinds of sequential dependencies. Recently, advances in

recurrent sequence modeling have made recurrent architectures more parallelizable, begging the

question of whether modern recurrent architectures might alleviate some of the drawbacks of
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the transformer. One promising way to help understand the tradeoffs between transformers and

recurrent LMs is to compare their theoretical expressivity: for example, are there ways in which

attention is “not all you need”, but where recurrence gives sequential architecture more expres-

sive power on transformers? Expressivity of analysis of linear RNNs has helped evaluate and

guide the development of new architectures in this area. Indeed, the theory reveals that there is

the potential for parallelizable recurrent architectures that can express sequential computation

beyond transformers.

4.3.1 Linear RNNs

The lack of parallelism in traditional and gated RNNs [Elm90; HS97; Cho+14] was a major

barrier towards training them at larger scales and sequence lengths: indeed, even before the

transformer took off, there was significant research aiming to constrain RNNs to make them

more parallelizable [Bra+17; Lei+18]. However, this line of research has been revived recently

as transformers have been applied to problems with longer sequence lengths. Various works

[GGR22; GD24; Kat+20; Yan+24c; Pen+25] have attempted to design RNNs that benefit from par-

allelism similarly to the transformer but with reduced memory at inference time and potential

advantages for recurrent state tracking. While these architectures have been developed under a

patchwork of related frameworks and names (e.g., linear transformers, linear RNNs, state-space

models, DeltaNet), they all generally share the property that they are architectures with a recur-

rent state whose update rule is a linear function, making it efficiently parallelizable. The following

definition of a linear RNN captures many of these approaches:

Definition 4.16 (Linear RNN [MPS24]). Given a sequence x1, . . . , x𝑛 ∈ R𝑘 , the recurrent form of

a linear RNN layer defines a new sequence of states h1, . . . , h𝑛 ∈ R𝑑 using projections A𝑖 ∈ R𝑑×𝑑 and

B𝑖 ∈ R𝑑×𝑘 , which can themselves depend on x𝑖 . For each 1 ≤ 𝑖 ≤ 𝑛,

h𝑖 = A𝑖h𝑖−1 + B𝑖x𝑖 .
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The layer outputs y𝑖 = C𝑖h𝑖 + D𝑖x𝑖 ∈ R𝑘 , where C𝑖 ∈ R𝑘×𝑑 and D𝑖 ∈ R𝑘×𝑘 depend on x𝑖 .

The convolutional form of Definition 4.16 computes the same h1, . . . , h𝑛 via:2

h𝑖 =
𝑖∑︁
𝑗=1

©­«
𝑖∏

𝑘= 𝑗+1
A𝑘

ª®¬B 𝑗x 𝑗 . (4.1)

The convolutional form is what allows these architectures to benefit from parallelism on the

sequence length dimension, as efficient parallel algorithms exist for computing iterated sums

and products [Ble90]. In contrast, the nonlinearity in traditional RNN architectures prevents

them from being paralellized in this way. Definition 4.16 is general enough to capture S4, Mamba,

and some other SSMs, though other related architectures including linear attention [Kat+20] and

DeltaNet [Yan+24c] require a generalization where h𝑖 is replaced by a matrix-valued state.

4.3.2 Limited expressivity of basic SSMs

Our first result shows that standard linear RNNs, including the SSM architecture S4 [GGR22],

can be simulated in TC0:

Theorem 4.17 ([MPS24], Theorem 4.2). Consider a linear RNN (e.g., S4) where each layer has the

form h𝑖 = Ah𝑖−1 + Bx𝑖 . Then, the output of the network can be computed in L-uniform TC0.

Thus, despite the fact that S4 and other simple linear RNNs have a seemingly recurrent form,

they can only implement highly parallelizable computation. The same applies to Mamba [GD24],

a linear RNN that, unlike S4, allows input-dependent gating in the transition matrix A𝑖 :

Theorem 4.18 ([MPS24], Theorem 4.3). Consider a linear RNN (e.g., Mamba) where A𝑖 is diagonal

but input dependent. Let x𝑖 ↦→ A𝑖 be computable in L-uniform TC0. Then, the output of the network

can be computed in L-uniform TC0.

2We define the cumulative product to unroll from greatest to least, e.g.,
∏3

1 A𝑖 = A3A2A1. The order is important
due to the non-commutativity of matrix multiplication.
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Thus, S4, Mamba, and other other linear RNN variant whose transition matrix is non-input-

dependent or diagonal can only solve problems in TC0. Thus, assuming TC0 ≠ NC1, these ar-

chitectures cannot express inherently sequential NC1-hard problems. In particular, this suggests

that S4 and Mamba, alongside transformers, should not be able to recognize regular languages,

a task which is NC1-complete [MPS24]. These regular language tasks can be taken as a formal

model of state tracking problems like composing chess moves or entity tracking (Section 5.4),

suggesting potential limitations of fixed-depth basic SSMs on these tasks [MPS24].

4.3.3 Towards parallelizable and expressive architectures

Transformers, S4, and Mamba can all only recognize languages in TC0. However, this is not

true of all linear RNNs: it turns out there are minimal extensions to existing architectures that

remain parallelizable on hardware while also gaining expressivity forNC1-complete problems. In

particular, as a minimal proof of concept, Merrill, Petty, and Sabharwal [MPS24] introduce input-

dependent S4 (IDS4), where the transition matrix A𝑖 is reparameterized as a linear projection of

h𝑖−1. They show IDS4 can recognize any regular language, thus gaining expressivity beyond TC0

under standard conjectures:

Theorem 4.19 ([MPS24], Theorem 5.2). For any regular language, There exists a 1-layer IDS4

model that recognizes it.

Due to this greater expressivity, IDS4 should be more capable of hard state tracking tasks

compared to transformers, S4, or Mamba. Merrill, Petty, and Sabharwal [MPS24] test this em-

pirically by training IDS4 and other architectures on several algebraic word problem tasks. As

shown in Figure 4.2, whereas transformers, S4, and Mamba require depth to grow with sequence

length to solve the NC1-complete task 𝐴5, both IDS4 and classical nonlinear RNNs can succeed

with just one layer. This shows that, at least in this setting, IDS4 models can learn to use their

greater expressivity to solve hard state tracking tasks.
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Figure 4.2: Figure taken from Merrill, Petty, and Sabharwal [MPS24]. The depth required to achieve
strong accuracy by different architectures on three state tracking tasks, of which 𝐴5 represents hard
(NC1-complete) state tracking. On𝐴5, classic RNNs and IDS4 can succeed with one layer for all sequence
lengths, whereas transformers, S4, and Mamba require the number of layers to grow with the sequence
length, as predicted by expressivity results (Theorems 3.1 and 4.17 to 4.19).

While IDS4 is efficienty parallelizable using the parallel SCAN algorithm [Ble90], it requires

dense transition matrices, which translates to high memory overhead in practice. Inspired by

Theorem 4.19, follow-up work has developed and scaled up more practical architectures that gain

expressivity with less memory overhead. In particular, in the DeltaNet framework [Yan+24c], the

transition matrix can be expressed as a sum of an identity and rank-1 matrix, which unlocks some

NC1-complete state tracking capabilities [Gra+25; Sie+25]. As this parameterization is convenient

for reducing memory overhead, Grazzi et al. [Gra+25] successfully train an LM with this archi-

tecture at the 1.3B parameter scale, with the variant with expressivity guarantees outperforming

a simpler baseline on math and code reasoning benchmarks. The RWKV-7 architecture, trained

up to the 2.9B parameter scale, follows a similar idea of a diagonal-plus-rank-1 parameterization

[Pen+25]. Notably, we show that RWKV-7 has strong expressivity guarantees for state tracking:

Theorem 4.20 ([Pen+25], Theorem 3). For any regular language, there exists a 4-layer RWKV-7

model that recognizes it.

Similar to with IDS4, this enhanced expressivity translates to impressive performance of

RWKV-7 on synthetic state tracking evaluations: as shown in Figure 4.3, RWKV-7 requires fewer
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Figure 4.3: Figure taken from Peng et al. [Pen+25]. In line with Theorem 4.20, RWKV-7 requires fewer
layers than S4 or Mamba to solve the hard state tracking task 𝐴5 across sequence lengths.

layers than S4 and Mamba (at most 2) to solve the𝐴5 state tracking task across sequence lengths.

Beyond this evaluation on a synthetic task, RWKV-7 shows strong compute efficiency on down-

stream multilingual benchmarks and comparable performance to Qwen 2.5, a competitive trans-

former baseline [Qwe+25], on English benchmarks [Pen+25, Figures 3 and 4].

In summary, Theorem 4.19 has inspired architectural innovations like the extension toDeltaNet,

RWKV-7, and even more recent approaches like PaTH attention [Yan+25]. In general, these ap-

proaches are linear RNN architectures that balance enhanced expressivity with parallelism and

memory overhead, making them feasibly scalable for large-scale language modeling.
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5 | Implications of expressivity results

The theoretical results on transformer expressivity discussed here, in particular, Theorem 3.1,

help us understand the computationalmodel of transformers. On one hand, expressivity results

can help us understand what computation looks like inside transformers, giving us principled

formalisms for representing the algorithms that can be implemented internally by transformers

(Section 3.5) and revealing the different computational primitives enabled by different types of

attention (Section 3.2). On the other hand, expressivity results are interesting because they help

us reason about the fundamental limitations of LM architectures: Theorem 3.1 gives a formal

characterization of many types of computation that transformer language models cannot express

under standard complexity conjectures due to their inherent parallelism. I now turn to the broader

implications of these formal results: what do they tell us about LMs in practice? First, I discuss

the general notion of a tradeoff between parallelism and expressivity and its implications for

architecture design. I then discuss the implications of these computational limitations for various

capabilities we might want an LM to have: processing natural language, world modeling, in-

context learning, and general-purpose mathematical reasoning. Finally, I turn to a discussion of

limitations and open questions that I see as exciting opportunities for future research to address.
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5.1 The parallelism tradeoff

The class TC0 represents the class of problems that can be solved with a very high degree of

parallelism (constant depth). Thus, in some sense, our result in Theorem 3.1 that transformers

can be computed in TC0 is a consequence of the fact that they were made to efficiently paral-

lelizable for large-scale pretraining, in contrast to traditional RNNs [Vas+17]. On the other hand,

transformers with CoT or traditional RNNs have expressive power beyond TC0 under standard

conjectures, but they cannot be parallelized to the same degree. These expressivity results suggest

there is a fundamental parallelism tradeoff between the expressive power of a model and the

degree to which it can be parallelized. As parallelism is essential for scaling models up, this sug-

gests that some complexity class capturing parallel computation should be a fundamental limit

for the expressive power of architectures that can be trained on the task of large-scale language

modeling. In order to gain greater expressivity, these architectures must either sacrifice on par-

allelism, harming the scalability of pretraining, or perhaps be adapted after training to be less

parallelizable at inference time.

This parallelism tradeoff resembles the more familar bias-variance tradeoff between expres-

sivity and inductive bias, but differs in some respects. The bias-variance tradeoff suggests that

more expressive models may be detrimental because they can overfit to noise in the training

data, whereas less expressive models may have a better inductive bias towards the true under-

lying function. While this idea is attractive, it may not be the best mental model for thinking

about expressivity of large language models or deep learning in general. Large language models

are trained on massive amounts of data and appear to have some form of implicit regulariza-

tion that prevent overfitting. Thus, in practice, their expressivity is generally not bottlenecked

by concerns about overfitting, but, rather, the constraint that they must be parallelized to train

on massive amounts of data. This makes the parallelism tradeoff an important consideration for

evaluating and developing language modeling architectures (potentially more so than the bias-
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variance tradeoff).

The parallelism tradeoff concerns parallelism on the token dimension, which is important

for training LMs that can process long documents. A separate kind of parallelism that is also

potentially important in practice is parallelism on the batch dimension: the more documents

can be learned from in parallel during training without compromising performance, the more

parallelizable training can be made. For this reason, various works have attempted to build out

empirical and theoretical understanding of large-batch training, suggesting that potential for

large-batch training increases as the training task becomes more difficult [McC+18; Zha+25].

In general, this line of work is complementary to the tradeoff between parallelism and discussed

explored here.

5.2 The opportunity for more expressive architectures

From the point of view of the parallelism tradeoff, a natural question is whether transformer

language models are at some frontier for balancing expressivity and parallelism, or whether it

is possible to design a language modeling architecture that is more expressive while remaining

just as parallelizable in practice. At some level, the parallelism tradeoff must fundamentally pre-

clude gaining expressivity with no cost in parallelism: it is not possible to parallelize all efficient

computation unless current conjectures (NC = P) in complexity theory are false. But perhaps

the level of parallelism that transformers and other LM architectures attain (i.e., TC0) is unneces-

sarily restrictive for models trained on GPUs, which, underlyingly, are AND/OR circuits lacking

majority gates. This means that, in practice, the computation graph to implement a fixed-depth

transformer or SSM on such hardware must end up having depth 𝑂 (log𝑛). Indeed, the SCAN

algorithm [Ble90] uses 𝑂 (log𝑛) depth to compute a single layer of an SSM. In this sense, trans-

formers are more parallelizable than they need to be: the constraint of being in TC0 (as opposed

to say, NC1 or TC1) does not translate to a gain in parallel runtime on today’s hardware.
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This suggests an opportunity: in principle, we could design model architectures that can solve

problems thought to be outside TC0 without sacrificing parallel parallelism. In particular, Merrill,

Petty, and Sabharwal [MPS24] developed a linear RNN architecture that can solve NC1-complete

problems (including state tracking) while being parallelizable on hardware using the same par-

allel SCAN algorithm [Ble90] used to parallelize standard linear RNNs. This architecture is a

proof-of-concept that we can design architectures with expressive power beyond transformers

without sacrificing practical parallelism since transformers and related arhitectures are, in some

sense, overly parallelizable compared to what today’s hardware can exploit. In principle, there

is opportunity to similarly extend expressivity to handle even more complex problems such as

those that are NL-complete.

As discussed in Section 4.3.3, an additional constraint on linear RNNs is the memory overhead

required by the parameterization of the transition matrix. Several works have already considered

how to achieve expressivity ofNC1-complete problemswith amemory-efficient parameterization

[Gra+25; Pen+25], but figuring out how to best balance expressivity, parallelism, and memory

overhead is an important guiding question for future research on linear RNN architectures.

Finally, a different interpretation of the fact that current hardware does not take full advantage

of the parallelism of TC0 architectures is that hardware advances could, in principle, make trans-

formers and other LM architectures parallelizable. Partially inspired by this motivation, some

recent theoretical work suggests there may be potential for classical or quantum hardware that

could more efficiently compute majority gates compared to standard hardware today [CBM25;

Oli+25]. This is an example of how theoretical understanding of architectures’ expressivity might

inform the development of specialized hardware for LMs.
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5.3 Processing the structure of natural language

One of the goals originally motivating the analysis of deep learning architectures in terms of

formal language and complexity theory was understanding whether deep learning models could

theoretically build syntactic and semantic representations for natural language like those sug-

gested in linguistic theory [Mer19]. We thus turn towards considering the implications for these

questions from the complexity-theoretic analysis of transformers developed in this thesis. In

particular, without approaches like CoT, is it possible for transformers to build representations of

syntactic structure or carry out the computations required to evaluate the semantics of linguistic

utterances?

5.3.1 Syntactic dependencies

What does Theorem 3.1 imply about the formal ability of transformers to process the syn-

tax of natural language? Chomsky [Cho56] suggested that the hierarchical structure of natural

language syntax could be approximately modeled by a context-free grammar (CFG), so we can

take the circuit complexity characterization of context-free recognition as a formal model of pro-

cessing natural language syntax. As discussed in Section 3.4.2, context-free recognition is in AC1

[Ruz80; Ven91] Thus, at first glance, our characterization of transformers in TC0 (Theorem 3.1)

might be taken to suggest that transformers should struggle to represent the structure of natural

language.

However, the characterization of context-free recognition in AC1 is worst-case and does not

take into account that the syntax of natural language is likely easier than an adversarial context-

free grammar. For instance, for typical natural language, short sentences are much more likely

than long ones, though there is a long tail of long sentences [Wil40; BK19]. Moreover, even for

long sentences, wemight imagine that syntactic center embedding depth is relatively bounded, or

at least that sentences with less center embedding are preferred, though the degree of preference
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may vary across languages. Futhermore, while natural language exhibits notable examples of

syntactic ambiguities (Time flies like an arrow), ambiguity is not typically as widespread as is

possible in some diabolical CFGs.

In general, these constraints on the types of context-free structure found in natural language

likely make syntactic processing easier than worst-case CFG recognition. For instance, the pump-

ing lemma implies that context-free languages with bounded center embedding are actually reg-

ular, and thus can be recognized by an 𝑂 (log𝑛)-depth looped transformer (Section 3.4.1). As

context-free languages become less ambiguous, recognition gets simpler from a circuit-complexity

perspective: Dyck languages and structured CFLs, which are both special cases of deterministic

CFLs, can both be recognized in TC0 [MC89]. Thus, even if CFG recognition may be inexpress-

ible by transformers in the worst case, constraints on the syntactic structures in natural language

likely make the recognition problem for naturalistic grammars easier than for adversarial gram-

mars (indeed, constraints or strategic avoidance of ambiguity may play a similar role in making

parsing computationally efficient for humans as well [Alt88]; memory constraints, which are rel-

evant for humans [Hah+22], are less relevant for transformers). On the other hand, it has been

argued that some dependencies in natural language cannot be expressed in a context-free formal-

ism [Shi85], so, in principle, certain aspects of natural-language syntax could be harder to model

than the circuit complexity results about CFGs suggest.

5.3.2 Semantic evaluation

Semantically evaluating utterances can be harder than verifying their syntax: while recog-

nizing well-formed boolean formulas is in TC0, evaluating them is NC1-complete [Bus87]. Thus,

even if transformers can represent the hierarchical structure of natural language to an extent,

evaluating natural-language expressions with a complex compositional structure is likely harder,

potentially requiring CoT or dynamic depth for transformers in the worst case. On the other

hand, if sentence length is typically bounded in practice, then a fixed-depth transformer may
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suffice to evaluate complex compositional expressions up to a certain length.

Going beyond individual sentences, a question remains about LMs’ ability to maintain se-

mantic representations of a long document or discourse, especially when the document is long.

We can address this question by considering a simple model of document-level language under-

standing inspired by truth-conditional formal semantics [HK98]. We take the meaning of each

sentence 𝑠 as its truth conditions J𝑠K ⊆ 𝑊 : the set of possible worlds in which it is true. The

meaning of a document is the set of worlds consistent with all its sentences:

Definition 5.1 (Truth-conditional denotation). Given a document (i.e., list of sentences) 𝑠1 . . . 𝑠𝑛 ,

its truth-conditional denotation J𝑠1 . . . 𝑠𝑛K ⊆𝑊 is

J𝑠1 . . . 𝑠𝑛K =
𝑛⋂
𝑖=1

J𝑠𝑖K.

If we take the set of possible worlds𝑊 as finite, then evaluating the truth-conditional denota-

tion of a document is a word problem over a commutative finite monoid (Section 3.4.1). Thus, at

least in this simplified case, it seems truth conditional semantics should be close in complexity to

what transformers are capable of, though technically we have not proved that transformers can

express finite truth-conditional semantics—just that this problem is in TC0. It is unclear how our

characterization would change in the more general case where𝑊 is not finite, but rather finitely

generated, which reflects the realistic setting where the sentences in the underlying language

are compositional. It is conceivable that the structure theory of finitely generated commutative

monoids could be applied to analyze this case, which we leave to future work.1 For now, we con-

clude that truth-conditional semantics with a finite set of possible worlds is similar to complexity

to what transformers are capable of expressing.

On the other hand, not all semantic phenomena in natural language can be captured by truth-

conditional semantics (Definition 5.1). For example, presuppositions, pronoun anaphora, and di-
1https://mathoverflow.net/q/293883
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alogues where speakers evolve over time require a semantic theory where the meaning of a sen-

tence can change depending on its context in a discourse. To account for this, a research program

of formal semantic theory called dynamic semantics [Nou+22] generalizes semantic evaluation to

make each sentence a relation from possible to worlds to possible worlds. Formally, we recast J𝑠𝑖K

to be a relation in𝑊 2, and semantically evaluating a document is equivalent to computing the

composition of the relation represented by each sentence.

Definition 5.2 (Relation composition). For two relations 𝑋,𝑌 ⊆𝑊 2, define the composition 𝑋 ◦𝑌

such that (𝑥,𝑦) ∈ 𝑋 ◦ 𝑌 if there exists 𝑧 ∈𝑊 such that (𝑥, 𝑧) ∈ 𝑋 and (𝑧,𝑦) ∈ 𝑌 .

Definition 5.3 (Dynamic denotation). Let
∏

denote iterated relation composition (◦). Given a

document 𝑠1 . . . 𝑠𝑛 , its dynamic denotation ⟨𝑠1 . . . 𝑠𝑛⟩ ⊆𝑊 2 is defined

⟨𝑠1 . . . 𝑠𝑛⟩ =
𝑛∏
𝑖=1

⟨𝑠𝑖⟩.

The truth conditions can be recovered from a dynamic denotation via J𝑠𝑖K = diag(⟨𝑠𝑖⟩),

though, crucially, ⟨𝑠𝑖⟩ contains more information than J𝑠𝑖K and is not commutative. This means

the truth conditions of a sentence can be context-dependent, which is important for handling

phenomena like presupposition and pronoun anaphora.

As denotation composition is associative, dynamic denotations form a monoid with respect

to composition. If the set of dynamic denotations is finite, this is a finite monoid, meaning com-

position is a regular language recognition problem (Section 3.4.1). Thus, computing it is NC1-

complete, suggesting a transformer with a fixed depth should not be able to solve this task over

long documents. Moreover, due to the unbounded set of meanings expressible in natural lan-

guage, it is probably not realistic to take𝑊 2 to be finite. This means the complexity of document-

level language understanding (formalized in terms of dynamic denotations) could be even more

difficult than NC1-complete, though it is hard to formalize this.
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Sufficiency of distributional semantics. Beyond expressivity, a fundamental question about

semantics in regards to LMs is the degree to which the meaning of sentences (or aspects of the

world they refer to) can be reconstructed from the distributional pretraining objective of next-

token prediction, where any information about the world or meaning behind a text must be

implicit [Har54; BK20]. In a line of work orthogonal to analyzing architectures’ expressivity, I

have analyzed how the linguistic principles underlying human communication (such as a bias

towards truthfulness or informativeness) might lead sentence co-occurrence probabilities in nat-

uralistic text to encode abstract semantic information. Since LMs are trained to model such co-

occurrences, this explains why they be able to reconstruct semantic information from training.

For instance, in the context of programming languages, we showed formally and empirically that,

if a code corpus has a bias towards truthful (i.e., correct) assertion statements, observing the dis-

tribution of these assertion statements is sufficient for learning how to execute some, but not all,

programming languages [Mer+21b; Wu+23]. Similarly, if authors of a natural-language corpus

have a bias towards informativeness (rather than truthfulness), we argued theoretically and em-

pirically that this can lead co-occurrence patterns to closely reflect semantics in the sense of en-

tailment relations [MWL22; Mer+24]. These works provide a preliminary understanding of how

the communicative goals of speakers can create a correspondence between form and meaning in

corpus data, which LMs can potentially leverage to learn semantic structure about language and

the world. There is opportunity to develop and generalize this perspective, building out a theory

of the types of semantic information that is easy to reconstruct from next-token prediction, and

the types of semantics for which next-token prediction might be fundamentally insufficient.

5.4 World models and planning

Beyond representing the syntax and semantics of language, one cognitive capability that is

interesting to investigate with LMs is their ability to maintain world models. That is, beyond the
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apparent coherence of the text they generate, is it the case that LMs have a consistent model of

the world while processing text about it? While this concept of world models is not entirely well

defined, it is closely related to the notion of state tracking: being able to maintain a model of

the state of the worlds as various actions or events take place. We have previously explored the

state tracking capabilities of LMs in connection to regular languages (Section 3.4.1), and these re-

sults naturally bear on the question of LMs’ world modeling capabilities. Concretely, the fact that

constant-depth transformers cannot represent arbitrary regular languages suggests they should

not be able to represent some kinds of world models, e.g., arbitrary chess games in source-target

notation [MPS24]. However, it is an open question to what degree real world models correspond

to regular languages that are hard to represent (i.e., NC1-complete), and, deep transformers can

express state tracking over exponentially long world histories, even if they cannot do so forever.

These qualifications suggest that some practical, fuzzy notion of world modeling may be signif-

icantly easier to represent than the exact task; on the other hand, world modeling over large

worlds may be significantly harder than the “finite” worlds captured by regular language prob-

lems. For both of these reasons, there are interesting opportunity for future work that refines our

understanding of LMs’ world modeling and state tracking capabilities in terms of formal language

theory.

Beyond simply maintaining a model of the world, a higher target capability for LMs would

be the ability to implement goal-oriented behavior, which is sometimes called planning. We can

roughly define planning as, given a world model, using it to maximizing or approximately maxi-

mizing some notion of reward through interactions with the world. From a complexity perspec-

tive, computing the reward of a trajectory through the world is P-complete [GHR91]. Constant-

depth transformers, or even𝑂 (log𝑘 𝑛) depth padded transformers, cannot solve P-complete prob-

lems unless NC = P, which suggests CoT is fundamentally necessary for LMs to achieve this

notion of planning over a world model.
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5.5 In-context capabilities

One capability of interest in LMs is the ability to adapt to new tasks specified in the con-

text, either via instructions or examples provided by the user. We disentangle these two types

of in-context behaviors as instruction following and in-context learning. Instruction following can

be defined as executing some instruction or program specified in the input context over some

data, also provided in the input context [Fin+22]. In-context learning [Bro+20] is similar, except

that the behavior that should be executed is not specified via explicit instructions, but, rather,

via input-output examples. These two capabilities are also potentially intertwined, as it has been

suggested that one way LMs learn new tasks in-context is via inferring and executing composi-

tional programs made out of tasks learned during pretraining [HG23; Li+24a]. Understanding the

degree to which LMs can implement these behaviors reliably is important for evaluating to what

degree general-purpose LMs can be adapted on the fly to solve new, domain-specific problems.

Our expressivity results suggest that transformer LMs must likely rely heavily on CoT to ex-

ecute even simple instruction following tasks. In addition, we discuss how understanding trans-

former expressivity can potentially differentiate which learning algorithms can be executed in-

context by transformers without CoT, which could possibly inform the analysis of how LMs carry

out in-context learning in practice.

5.5.1 Instruction following

We formalize instruction following following Finlayson et al. [Fin+22]. The input contains

some program 𝑃 (specified for some model of computation) as well as an input𝑤 , and the goal of

the task is to compute 𝑃 (𝑤), which, for simplicity, we consider to be a single bit. Thus, instruc-

tion following can be thought of as an “in-context” variant of language recognition, where the

underlying formal language varies depending on the program specified in the context.

The difficulty of the instruction following task depends on the complexity of the programs
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that are allowed. However, even for very simple programs, instruction following is hard for trans-

formers. Finlayson et al. [Fin+22] find empirically that transformer LMs struggle to solve instruc-

tion following where the programs are regular expressions. Theoretically, this task is NC1-hard

since it is at least as hard as fixed regular language recognition, so, Theorem 3.1 implies trans-

formers likely cannot solve it without CoT, in line with Finlayson et al. [Fin+22]’s results. If we

replace regular expressions with context-free grammars with 𝜖 productions, it is known that the

instruction following task increases in difficulty to P-complete [GHR91], suggesting transformers

require at least linear CoT to solve it unless P = NC.

Beyond regular expressions and context-free languages, another natural variant of the in-

struction following task is where the programs are boolean formulas (e.g., 𝑥1∧¬𝑥2) and the inputs

are bit strings. In this case, the task isNC1-complete, as it is essentially the boolean formula value

problem. Thus, fixed-depth transformers without CoT cannot solve it assuming TC0 ≠ NC1. If

we generalize the boolean formulas to be serializations of boolean circuits, this problem becomes

P-complete [GHR91], so, as with the case of context-free grammars, transformers require at least

linear CoT unless NC = P. Overall, these results suggest that transformers without CoT should

be incapable of following complex instructions and provide guidance on how much CoT should

be necessary for tranformers to execute instructions of different levels of complexity.

5.5.2 In-context learning

In-context learning [Bro+20] is a kind of inductive reasoning where an LM is expected to gen-

eralize a rule from some examples and apply it to a novel input. More formally, the input for an

in-context learning problem is a sequence of labeled examples 𝐷 = {⟨𝑥𝑖, 𝑦𝑖⟩}𝑛𝑖=1, as well as an un-

labeled example 𝑥 . The goal is to return ℎ∗(𝑥), where ℎ∗ is some hypothesis computed from𝐷 via

some learning algorithm. There has been significant empirical work evaluating LMs’ in-context

learning and inductive reasoning capabilities [Qiu+24; Hua+25a, inter alia] and work exploring

the kind of learning algorithms that transformers might use for in-context learning [Aky+23;
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Aky+24]. Our theoretical results about transformer expressivity can be leveraged to better un-

derstand the kinds of inductive reasoning that transformers could conceivably implement. In

particular, we can compare the extent to which parallelizable transformers can implement se-

quential learning algorithms like gradient descent, and compare this to their ability to implement

more parallelizable learning algorithms like Bayesian inference.

Gradient-like descent. One natural learning algorithm to use to select ℎ∗ in in-context learn-

ing would be with an algorithm resembling gradient descent. Past empirical and theoretical work

has considered the ability for transformers to implement in-context gradient descent to solve lin-

ear regression and other in-context learning problem [Gar+22; Aky+23]. Inspired by this past

work, we can define the following in-context learning algorithm that formalizes using a learner

resembling gradient descent:

Definition 5.4 (In context gradient-like descent). Assume 𝐻 is parameterized by 𝜃 . Let𝐺 (𝑥,𝑦;𝜃 )

be a function that returns new parameters 𝜃 ′. In-context gradient-like descent initializes 𝜃0 = 0 and

then computes 𝜃𝑖+1 = 𝐺 (𝑥𝑖, 𝑦𝑖 ;𝜃𝑖). The learner selects the hypothesis ℎ∗ = ℎ𝜃𝑛 .

Standard gradient descent with batch size 1 can be recovered by making𝐻 differentiable with

respect to 𝜃 and setting𝐺 (𝑥,𝑦;𝜃 ) = 𝜃 −𝜂∇𝐿(𝑥,𝑦) for some loss function 𝐿. In the other direction,

given a finite list of points 𝐷 = {⟨𝑥𝑖, 𝑦𝑖⟩}𝑛𝑖=1, we can construct a loss function whose gradient

matches 𝐺 on 𝐷 . Thus, gradient-like descent is equivalent to gradient descent with some loss

and batch size 1, except that not all choices of 𝐺 correspond to common loss functions.

Existing constructions for gradient descent with transformers require the depth to grow lin-

early with the context so that a sequence of steps can be applied sequentially, one per layer. Thus,

transformers would not be able to implement gradient descent over long sequences assuming the

depth of the network is relatively small, as is typically the case in practice. Intuitively, the lin-

ear depth of gradient construction feels necessary, since each gradient step depends on the steps

taken previously. Interestingly, it follows from Theorem 3.1 that, assuming TC0 ≠ NC1, trans-
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formers require depth growing with the sequence length to implement in-context gradient-like

descent:

Proposition 5.5. There exists a gradient function 𝐺 such that in-context gradient-like descent is

NC1-hard under FO reductions.

Proof. For an arbitrary regular language 𝐿 ⊆ Σ∗, we will construct 𝐺 such that recognizing

whether𝑤 ∈ 𝐿 can be reduced to in-context gradient-like descent with𝐷 = {⟨𝑤𝑖, $⟩}𝑛𝑖=1 and 𝑥 = $

w.r.t. 𝐺 , where $ ∉ Σ is a special symbol. Since recognizing regular languages is NC1-complete,

it follows that in-context gradient-like descent is NC1-hard.

Since 𝐿 is regular, it can be recognized by a deterministic finite-state automaton with states

𝑄 and transition function 𝛿 . We identify 𝐻 with𝑄 , representing each state 𝑞 ∈ 𝑄 as a point 𝜃𝑞 in

parameter space. For each hypothesis ℎ ∈ 𝐻 , we set ℎ($) = 1 iff the state 𝑞 associated with ℎ is

accepting. We set 𝜃0 to the initial state, i.e., 𝜃𝑞0 . We then construct 𝐺 as follows:

𝐺 (𝑥,𝑦;𝜃𝑞) = 𝜃𝛿 (𝑥,𝑞) .

By construction, theℎ∗ returned by gradient-like descent on {⟨𝑤𝑖, $⟩}𝑛𝑖=1 encodes the state reached

by the automaton on input𝑤 . Thus, ℎ∗($) returns whether𝑤 ∈ 𝐿. □

Theorem 5.5 formalizes the inherently sequential nature of in-context gradient descent, sug-

gesting it cannot be implemented by constant-depth transformers. This simple example is meant

to give an intuitive proof of concept for how gradient descent in transformers requires depth

growing with the sequence length. It is somewhat artificial in the sense that the loss implies by𝐺

is not necessarily natural. Further, it is possible that this argument could be strengthened to show

that in-context gradient is actually more sequential than NC1-hard: for example, it would be in-

teresting to consider whether it could be shown that in-context gradient descent is P-complete,

which would imply that it likely requires linear depth when implemented by transformers.
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In-context Bayesian inference. Gradient descent is not the only approach to attempt to im-

plement in-context learning. Another learning framework discussed in the literature is Bayesian

inference: an LM could use in-context examples 𝐷 as well as a prior to rank hypothesis by their

likelihood [Xie+22; Qiu+25]. More formally, for each hypothesis ℎ, we assume we are given a

prior 𝑝 (ℎ) and a way to assign probability to data 𝑝 (𝑦, | 𝑥, ℎ). In-context Bayesian inference

selects ℎ∗ as the hypothesis that maximizes

𝑝 (ℎ | 𝐷) = 𝑝 (ℎ)
𝑛∏
𝑖=1

𝑝 (𝑥𝑖, 𝑦𝑖 | 𝑥𝑖, ℎ).

In contrast to gradient descent, where finding ℎ∗ is a sequential process over different data

batches, much of the work in scoring 𝑝 (ℎ | 𝐷) can be done in parallel over the data. Along

these lines, it turns out that there is a natural TC0 construction to implement in-context Bayesian

inference. Assume the hypothesis class has size at most polynomial in the number of samples,

i.e., 𝑛 = Ω(log|𝐻 |). Further, we will assume each hypothesis ℎ ∈ 𝐻 is simple enough such that

log𝑝 (ℎ) and log𝑝 (𝑥𝑖, 𝑦𝑖 | ℎ) are computable in TC0. To perform in-context Bayesian inference in

TC0, we first compute the following in parallel for each ℎ:

log𝑝 (ℎ) +
𝑛∑︁
𝑖=1

log𝑝 (𝑥𝑖, 𝑦𝑖, | ℎ).

Next, we can use an AC0 circuit to find ℎ∗ as the hypothesis that maximizes log𝑝 (ℎ). This shows

that, due to its inherent parallelism, in-context Bayesian inference can be implemented in TC0.

This likely makes it closer to the kinds of algorithms transformers can express without CoT com-

pared to in-context gradient descent.
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5.6 General mathematical reasoning

A central theme in the historical development of computer science from mathematics and

philosophy has been the quest to develop an automated general-purpose system for reasoning

and mathematics by some, and the establishment of fundamental limits on this enterprises by

others. In some cases, the development of negative results frustrated ongoing projects towards

automating mathematics: most crucially, Gödel’s incompleteness theorems strongly suggested

that the Hilbert Program to automate mathematical reasoning could not be achieved due to the

undecidability of first-order logic [Göd31; Raa22]. As noted in a letter from Gödel to von Neu-

mann [Har93], the P = NP question in complexity theory can be understood as a refinement of

this earlier question: the simpler problem of determining if first-order formulas have a proof of

size at most 𝑛 is not possible in polynomial time unless P = NP [Har93].

Despite these foundational negative results, some have laid out a vision for an, allegedly, not

so distant future where AI systems automate formal mathematical reasoning, or at least dras-

tically surpass humans’ abilities, driving mathematical advancements of immense practical and

intellectual value. For example, a talk by Noam Brown of OpenAI at the Simons Institute justifies

the steep cost of the o1model because it might lead to new life-saving drugs or deepmathematical

insights, posing the following question to an audience of theoretical computer scientists:2

What inference cost are you willing to pay for a proof of the Riemann Hypothesis?

This vision has led to the creation of hard mathematical benchmarks [Hen+21; Gla+24] that, to

an extent, show progress for recent LMs [Dee+25; Ope25].3 How do the results in this thesis on

the computational power of LM architectures bear on the feasibility of this quest for automated

mathematical reasoning with LMs and any fundamental barriers it might run into?

I do not claim to have much definitive to say about this deep question. But the computational
2https://simons.berkeley.edu/talks/noam-brown-openai-2024-09-26
3The related area of autonomous programming has undergone similar developments [Jim+24; Yan+24b].
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characterization of LM architectures established here and in related work might provide a frame-

work for addressing it and anticipating what architectural properties of LMs would be required

for general mathematical reasoning. At the very least, many notions of worst-case general math-

ematical reasoning are well beyond the capabilities of transformers. Theorem 3.1 establishes that

transformer LMs without CoT can only solve highly parallelizable problems in the class TC0. In

contrast, the determining whether a first-order formula is provable is undecidable and remains

NP-complete even if we only care about proofs up to some maximum length [Har93].4 So, trans-

formers without CoT cannot generally prove mathematical results, even if we only care about

proofs of bounded length (assuming TC0 ≠ NP, which is weaker than P ≠ NP). Moreover, sim-

pler forms of mathematical reasoning such as linear programming, circuit evaluation, or Horn

satisfiability are P-complete [GHR91], which means transformers without CoT could not even

express these unless TC0 = P.

But, of course, the most sophisticated reasoning models today rely heavily on CoT: does this

change the theoretical expectation for LMs’ reasoning capabilities? Indeed, with CoT, Theo-

rem 4.2 shows that the power of transformer LMs is expanded (likely) outside TC0 with enough

CoT steps, enabling transformer LMs with enough CoT steps to express linear programming, cir-

cuit evaluation, or Horn satisfiability. However, Theorem 4.6 shows, unsurprisingly, that trans-

former LMs would still require a superpolynomial number of CoT steps to solve hard math-

ematical reasoning problems like determining whether first-order statements have bounded-

length proofs (NP-complete), propositional satisfiability (NP-complete), or propositional tautol-

ogy (coNP-complete). Thus, while CoT extends the capabilities of transformers for inherently

sequential computation, we should not expect CoT reasoning models to magically enable general

mathematical reasoning.

A reasonable objection here is that, while these mathematical reasoning problems are hard in

the worst case, restricted types of mathematical reasoning could very well be easier in practice, as
4Formally, the problem is {⟨𝜙, 1𝑛⟩ | 𝜙 has a proof of length at most 𝑛}.
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constraints on the types of theorems that are actually interesting could make this problem more

tractable. A related objection is that the real target is not general theorem proving, but “just”

surpassing human mathematical reasoning capabilities, which is a lower bar. In a sense, the more

finegrained characterization of different LM architectures in terms of different complexity classes

(Section 3.4) can be seen as a step towards addressing these objections. Rather than thinking

about mathematical reasoning as a binary, understanding the computational power of LMs allows

us to more qualitatively describe the kinds of reasoning they could express and compare the

potential of different architectures and methods. In this way, this thesis provides a foundation

for understanding the mathematical reasoning abilities of LMs.

5.7 Limitations and open qestions

We now understand much more about the computational power of transformers than when

the transformer architecture was originally proposed [Vas+17]. Vaswani et al. [Vas+17] famously

claim that “attention is all you need” to process language, but Chapter 3 reveals that, because

transformers (without CoT) rely solely on attention without recurrence, they can only express

languages in the class TC0 (Theorem 3.1). This means transformers are fundamentally limited in

state tracking and other inherently sequential computation compared to recurrent architectures.

Thus, while the parallelism of the transformer architecture (relative to recurrent architectures)

has been important advantage for practical scalability, it comes with the tradeoff of reduced ex-

pressivity for sequential problems. In Chapter 4, we developed a finegrained theory for how CoT

changes the computational power of a transformer LM by adding sequential dependencies into

its computation graph. Linear CoT allows transformers to solve problems thought to be outside

TC0, and, with enough CoT, transformers can express any problem in P. But, on the other hand,

CoT may not be the most efficient way to extend the computational power of LMs. Theoret-

ically, looped and padded transformers or parallelizable recurrent architectures can gain some
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expressive power beyond transformers while retaining the parallelism that CoT destroys.

There aremany interesting theoretical questions around the expressive power of transformers

and other LM architectures that would potentially offer guidance to the practice of building LMs.

I offer some suggestions for high-level areas of future research below.

Tight characterization of soft-attention transformers. A longstanding quest in ex-

pressivity research is establishing a tight characterization of transformers, e.g., a variant of RASP

[WGY21] that exactly defines the class of languages that transformers recognize. Practically, this

would provide a principled “programming language” for interpretability research to use to repre-

sent transformer computation. For transformers with unique hard attention, such a characteriza-

tion exists: B-RASP, or, equivalently, linear temporal logic [YCA24]. For soft-attention transform-

ers, Theorem 3.7 [MS23a] establishes transformers can be “compiled into” the language FO[M],

and various works derive constrained logics that can be compiled into transformers [CCP23;

YC24]. But there is opportunity to tighten both of these directions and potentially even obtain a

single symbolic logic that fully captures soft-attention transformers.

Unconditional lower bounds for transformers. Additionally, theremay be opportunity in

the theory of transformer expressivity to establish unconditional power bounds for transformers

on various reasoning problems. The characterization of transformers in TC0 (Theorem 3.1) can

be viewed as a lower bound on the depth or size required for transformers against NC1-complete

problems, conditional on the assumption that TC0 ≠ NC1. This result leverages the parallelism of

the transformer architecture, but there are other, more finegrained properties like the autoregres-

sive structure of causal masking that could potentially be leveraged to prove unconditional lower

bounds without running into fundamental complexity barriers [CPW24]. Such results could help

us understand the computational differences between causally masked and unmasked transform-

ers.
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Attention that length generalizes. It would be interesting to more comprehensively un-

derstand the relations between different variants of attention and the types of attention patterns

that can be represented and learned robustly. Research has documented that transformers strug-

gle to robustly learn hard attention in a way that generalizes to longer strings [CC22; Liu+23a;

Hua+25b], but is there aminimal change to softmax attention that fixes this? Solving this problem

has the potential to improve transformers’ length generalization capabilities.

The necessity of attention. More radically, there is an interesting question about whether

we can build strong LMs without attention. We now understand that one key advantage of trans-

formers compared to RNNs is that attention is easier to parallelize than (nonlinear) recurrence.

On the other hand, the memory overhead of attention grows quasilinearly with sequence length,

which becomes expensive at long context lengths, motivating a new generation of parallelizable

recurrent architectures (cf. Section 4.3). Expressivity analysis reveals that transformers and these

new recurrent have different limitations, suggesting it could be promising to combine them for

greater computational power or a better tradeoff between expressivity and efficiency. Thus, it

seems quite promising for theory work to continue to guide practitioners in pushing the limits

of non-attention architectures for language modeling.

Beyond the worst case. One general caveat of our current understanding of expressivity is

that it largely grounded in worst-case analysis. This is not necessary a limitation, as the worst

case is a good model for assessing models to implement robust reasoning rather than relying on

heuristics for particular data distributions. But it would be interesting to build out theoretical

or empirical understanding of the distributional properties that make computational problems

harder or easier for transformers. This would help the community better reconcile negative ex-

pressivity results with positive empirical results and could be useful in practice for constructing

hard evaluations and diagnosing input domains where LMs might struggle.
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Bridging expressivity and learnability. Finally, the expressivity viewpoint on LMs ab-

stracts away optimization, instead focusing on what LMs are capable of with the “best possible”

learning algorithm. However, it is now understood that there are problems that are possible for

(some variant of) transformers to express but hard to learn, e.g., parity, due to an inductive bias

of transformers towards low-sensitivity functions [HJF21; Bha+23; Vas+25]. It would thus be in-

teresting to extend the theory of what transformers and other LMs can express to also account

for what they can robustly learn via gradient-based methods. This is an ambitious endeavor, but

there is a rich set of tools to draw from in classical learning theory (e.g., statistical query learning

[Kea98]) and deep learning theory, with some notable examples of theoretical progress at this

intersection [Bar+22; HR24; Hua+25b]. Continuing to bridge expressivity and learning has the

potential to advance our fundamental scientific understanding of how LMs acquire complex com-

putational behavior, clarify the limitations of the language modeling and reinforcement learning

paradigms, and open the door to more performant, efficient, and interpretable AI systems down

the road.
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